Fluorescent in situ hybridization on tissue microarrays: challenges and solutions (original) (raw)
Abstract
Tissue microarray (TMA) technology has provided a high throughput means of evaluating potential biomarkers and therapeutic targets in archival pathological specimens. TMAs facilitate the rapid assessment of molecular alterations in hundreds of different tumours on a single slide. Sections from TMAs can be used for any in situ tissue analysis, including fluorescent in situ hybridization (FISH). FISH is a molecular technique that detects numerical and structural abnormalities in both metaphase chromosomes and interphase nuclei. FISH is commonly used as a prognostic and diagnostic tool for the detection of translocations and for the assessment of gene deletion and amplification in tumours. Performing FISH on TMAs enables researchers to determine the clinical significance of specific genetic alterations in hundreds of highly characterized tumours. The use of FISH on archival paraffin embedded tissues is technically demanding and becomes even more challenging when applied to paraffin embedded TMAs. The problems encountered with FISH on TMAs, including probe preparation, hybridization, and potential applications of FISH, will be addressed in this review.
Access this article
Subscribe and save
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime Subscribe now
Buy Now
Price excludes VAT (USA)
Tax calculation will be finalised during checkout.
Instant access to the full article PDF.
Similar content being viewed by others
References
- Andersen CL et al (2001) Improved procedure for fluorescence in situ hybridization on tissue microarrays. Cytometry 45(2):83–86
Article PubMed CAS Google Scholar - Brown LA et al (2006) Amplification of EMSY, a novel oncogene on 11q13, in high grade ovarian surface epithelial carcinomas. Gynecol Oncol 100(2):264–270
Article PubMed CAS Google Scholar - Chin SF et al (2003) A simple and reliable pretreatment protocol facilitates fluorescent in situ hybridisation on tissue microarrays of paraffin wax embedded tumour samples. Mol Pathol 56(5):275–279
Article PubMed CAS Google Scholar - dos Santos NR et al (2001) Molecular mechanisms underlying human synovial sarcoma development. Genes Chromosomes Cancer 30(1):1–14
Article PubMed CAS Google Scholar - Ensinger C et al (1997) Improved technique for investigations on archival formalin-fixed, paraffin-embedded tumors by interphase in-situ hybridisation. Anticancer Res 17(6D):4633–4637
PubMed CAS Google Scholar - Feinberg AP, Vogelstein B (1983) A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem 132(1):6–13
Article PubMed CAS Google Scholar - Feinberg AP, Vogelstein B (1984) A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Addendum. Anal Biochem 137(1):266–267
Article PubMed CAS Google Scholar - Fisher C (1998) Synovial sarcoma. Ann Diagn Pathol 2(6):401–421
Article PubMed CAS Google Scholar - Fletcher JA (1999) DNA in situ hybridization as an adjunct in tumor diagnosis. Am J Clin Pathol 112(1 Suppl 1):S11–S18
PubMed CAS Google Scholar - Hughes-Davies L et al (2003) EMSY links the BRCA2 pathway to sporadic breast and ovarian cancer. Cell 115(5):523–535
Article PubMed CAS Google Scholar - Kearney L (1999) The impact of the new fish technologies on the cytogenetics of haematological malignancies. Br J Haematol 104(4):648–658
Article PubMed CAS Google Scholar - Knuutila S et al (1998) DNA copy number amplifications in human neoplasms: review of comparative genomic hybridization studies. Am J Pathol 152(5):1107–1123
PubMed CAS Google Scholar - Kononen J et al (1998) Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nat Med 4(7):844–847
Article PubMed CAS Google Scholar - Lee CH et al (2005) Assessment of Her-1, Her-2, And Her-3 expression and Her-2 amplification in advanced stage ovarian carcinoma. Int J Gynecol Pathol 24(2):147–152
Article PubMed Google Scholar - Makretsov N et al (2004) A fluorescence in situ hybridization study of ETV6-NTRK3 fusion gene in secretory breast carcinoma. Genes Chromosomes Cancer 40(2):152–157
Article PubMed CAS Google Scholar - Pergament E et al (2000) The clinical application of interphase FISH in prenatal diagnosis. Prenat Diagn 20(3):215–220
Article PubMed CAS Google Scholar - Prentice LM et al (2005) NRG1 gene rearrangements in clinical breast cancer: identification of an adjacent novel amplicon associated with poor prognosis. Oncogene 24(49):7281–7289
Article PubMed CAS Google Scholar - Rigby PW et al (1977) Labeling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. J Mol Biol 113(1):237–251
Article PubMed CAS Google Scholar - Schraml P et al (1999) Tissue microarrays for gene amplification surveys in many different tumor types. Clin Cancer Res 5(8):1966–1975
PubMed CAS Google Scholar - Spiridon CI et al (2002) Targeting multiple Her-2 epitopes with monoclonal antibodies results in improved antigrowth activity of a human breast cancer cell line in vitro and in vivo. Clin Cancer Res 8(6):1720–1730
PubMed CAS Google Scholar - Terry J et al (2005) Fluorescence in situ hybridization for the detection of t(X;18)(p11.2;q11.2) in a synovial sarcoma tissue microarray using a breakapart-style probe. Diagn Mol Pathol 14(2):77–82
Article PubMed CAS Google Scholar - Tomlins SA et al (2005) Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 310(5748):644–648
Article PubMed CAS Google Scholar - Tomlins SA et al (2006) TMPRSS2:ETV4 gene fusions define a third molecular subtype of prostate cancer. Cancer Res 66(7):3396–3400
Article PubMed CAS Google Scholar - Yoshimoto M et al (2006) Three-color FISH analysis of TMPRSS2/ERG fusions in prostate cancer indicates that genomic microdeletion of chromosome 21 is associated with rearrangement. Neoplasia 8(6):465–469
Article PubMed CAS Google Scholar
Author information
Authors and Affiliations
- Genetic Pathology Evaluation Centre of the Prostate Centre, University of British Columbia, Room 509, JBRC, 2660 Oak Street, V6H 3Z6, Vancouver, BC, Canada
Lindsay A. Brown & David Huntsman - Department of Pathology of Vancouver Coastal Health Research Institute, British Columbia Cancer Agency, University of British Columbia, Room 509, JBRC, 2660 Oak Street, V6H 3Z6, Vancouver, BC, Canada
Lindsay A. Brown & David Huntsman - Department of Pathology, Center for Translational and Applied Genomics, British Columbia Cancer Agency, University of British Columbia, 600 West 10th Avenue, V5Z 4E6, Vancouver, BC, Canada
David Huntsman
Authors
- Lindsay A. Brown
You can also search for this author inPubMed Google Scholar - David Huntsman
You can also search for this author inPubMed Google Scholar
Corresponding author
Correspondence toDavid Huntsman.
Rights and permissions
About this article
Cite this article
Brown, L.A., Huntsman, D. Fluorescent in situ hybridization on tissue microarrays: challenges and solutions.J Mol Hist 38, 151–157 (2007). https://doi.org/10.1007/s10735-006-9069-y
- Received: 13 October 2006
- Accepted: 08 November 2006
- Published: 10 January 2007
- Issue Date: May 2007
- DOI: https://doi.org/10.1007/s10735-006-9069-y