Biology of TNFα and IL-10, and their imbalance in heart failure (original) (raw)
Kaur K, Sharma AK, Singal PK (2006) Significance of changes in TNF-alpha and IL-10 levels in the progression of heart failure subsequent to myocardial infarction. Am J Physiol Heart Circ Physiol 291:H106–H113. doi:10.1152/ajpheart.01327.2005 PubMedCAS Google Scholar
Dhingra S, Sharma AK, Singla DK, Singal PK (2007) p38 and ERK 1/2 MAPkinases mediate interplay of TNF-alpha and IL-10 in regulating oxidative stress and cardiac myocyte apoptosis. Am J Physiol Heart Circ Physiol 293:H3524–H3531. doi:10.1152/ajpheart.00919.2007 PubMedCAS Google Scholar
Kaur K, Sharma AK, Dhingra S, Singal PK (2006) Interplay of TNF-alpha and IL-10 in regulating oxidative stress in isolated adult cardiac myocytes. J Mol Cell Cardiol 41:1023–1030. doi:10.1016/j.yjmcc.2006.08.005 PubMedCAS Google Scholar
Yao YY, Yin H, Shen B, Chao L, Chao J (2007) Tissue kallikrein and kinin infusion rescues failing myocardium after myocardial infarction. J Card Fail 13:588–596. doi:10.1016/j.cardfail.2007.04.009 PubMedCAS Google Scholar
Mann DL, Young JB (1994) Basic mechanisms in congestive heart failure. Recognizing the role of proinflammatory cytokines. Chest 105:897–904. doi:10.1378/chest.105.3.897 PubMedCAS Google Scholar
Langer SE, Scheer JF (1995) Solved—the riddle of illness. Keats Pub, USA Google Scholar
Deidier A (1725) Dissertation Medecinal et Chirurgical sur les Tumeurs, Paris
Kolmel K, Pfahlberg A, Mastrangelo G et al (1999) Infections and melanoma risk: results of a multicentre EORTC case-study. Melanoma Res 9:511–519 PubMedCAS Google Scholar
Busch W (1868) Aus der Sitzung der medicinischen Section vom 13 November 1867. Berl Klin Wochenschr 5:137 Google Scholar
Bruns P (1888) Die Heilwirkung des Erysipelas auf Geschwülste. Beitr Klin Chir 3:443 Google Scholar
Coley WB (1893) The treatment of malignant tumors by repeated inoculations of erysipelas: with a report of ten original cases. Am J Med Sci 105:487–511. doi:10.1097/00000441-189305000-00001 Google Scholar
Shear HJ, Marks ES (1962) Measuring self-confining behaviour patterns. J Clin Psychol 18:26–28. doi:10.1002/1097-4679(196201)18:1<26::AID-JCLP2270180107>3.0.CO;2-S PubMedCAS Google Scholar
Carswell EA, Old LJ, Kassel RL, Green S, Fiore N, Williamson B (1975) An endotoxin-induced serum factor that causes necrosis of tumors. Proc Natl Acad Sci USA 72:3666–3670. doi:10.1073/pnas.72.9.3666 PubMedCAS Google Scholar
Aggarwal BB, Henzel WJ, Moffat B, Kohr WJ, Harkins RN (1985) Human tumor necrosis factor: production, purification and characterization. J Biol Chem 260:2345–2354 PubMedCAS Google Scholar
Matthews N (1978) Tumour-necrosis factor from the rabbit. II. Production by monocytes. Br J Cancer 38:310–315 PubMedCAS Google Scholar
Smith CA, Davis T, Anderson D et al (1990) A receptor for tumor necrosis factor defines an unusual family of cellular and viral proteins. Science 248:1019–1023. doi:10.1126/science.2160731 PubMedCAS Google Scholar
Grell M, Douni E, Wajant H et al (1995) The transmembrane form of tumor necrosis factor is the prime activating ligand of the 80 kDa tumor necrosis factor receptor. Cell 83:793–802. doi:10.1016/0092-8674(95)90192-2 PubMedCAS Google Scholar
Grell M, Wajant H, Zimmermann G, Scheurich P (1998) The type 1 receptor (CD120a) is the high-affinity receptor for soluble tumor necrosis factor. Proc Natl Acad Sci USA 95:570–575. doi:10.1073/pnas.95.2.570 PubMedCAS Google Scholar
Torre-Amione G, Kapadia S, Lee J, Bies RD, Lebovitz R, Mann DL (1995) Expression and functional significance of tumor necrosis factor receptors in human myocardium. Circulation 92:1487–1493 PubMedCAS Google Scholar
Loetscher H, Gentz R, Zulauf M et al (1991) Recombinant 55-kDa tumor necrosis factor (TNF) receptor. Stoichiometry of binding to TNF alpha and TNF beta and inhibition of TNF activity. J Biol Chem 266:18324–18329 PubMedCAS Google Scholar
Wajant H, Henkler F, Scheurich P (2001) The TNF-receptor-associated factor family: scaffold molecules for cytokinereceptors, kinases and their regulators. Cell Signal 13:389–400. doi:10.1016/S0898-6568(01)00160-7 PubMedCAS Google Scholar
Stanger BZ, Leder P, Lee TH, Kim E, Seed B (1995) RIP: a novel protein containing a death domain that interacts with Fas/APO-1 (CD95) in yeast and causes cell death. Cell 81:513–523. doi:10.1016/0092-8674(95)90072-1 PubMedCAS Google Scholar
Enari M, Talanian RV, Wong WW, Nagata S (1996) Sequential activation of ICE-like and CPP32-like proteases during Fas-mediated apoptosis. Nature 380:723–726. doi:10.1038/380723a0 PubMedCAS Google Scholar
Vanden Berghe W, Plaisance S, Boone E et al (1998) p38 and extracellular signal-regulated kinase mitogen-activated protein kinase pathways are required for nuclear factor-kappaB p65 transactivation mediated by tumor necrosis factor. J Biol Chem 273:3285–3290. doi:10.1074/jbc.273.6.3285 PubMedCAS Google Scholar
Chang DJ, Ringold GM, Heller RA (1992) Cell killing and induction of manganous superoxide dismutase by tumor necrosis factor-alpha is mediated by lipoxygenase metabolites of arachidonic acid. Biochem Biophys Res Commun 188:538–546. doi:10.1016/0006-291X(92)91089-9 PubMedCAS Google Scholar
Blick M, Sherwin SA, Rosenblum M, Gutterman J (1987) Phase I study of recombinant tumor necrosis factor in cancer patients. Cancer Res 47:2986–2989 PubMedCAS Google Scholar
Satoh M, Nakamura M, Tamura G et al (1997) Inducible nitric oxide synthase and tumor necrosis factor-alpha in myocardium in human dilated cardiomyopathy. J Am Coll Cardiol 29:716–724. doi:10.1016/S0735-1097(96)00567-0 PubMedCAS Google Scholar
Torre-Amione G, Kapadia S, Lee J et al (1996) Tumor necrosis factor-alpha and tumor necrosis factor receptors in the failing human heart. Circulation 93:704–711 PubMedCAS Google Scholar
Giroir BP, Johnson JH, Brown T, Allen GL, Beutler B (1992) The tissue distribution of tumor necrosis factor biosynthesis during endotoxemia. J Clin Invest 90:693–698. doi:10.1172/JCI115939 PubMedCAS Google Scholar
Kapadia S, Lee J, Torre-Amione G, Birdsall HH, Ma TS, Mann DL (1995) Tumor necrosis factor-alpha gene and protein expression in adult feline myocardium after endotoxin administration. J Clin Invest 96:1042–1052. doi:10.1172/JCI118090 PubMedCAS Google Scholar
Kapadia SR, Oral H, Lee J, Nakano M, Taffet GE, Mann DL (1997) Hemodynamic regulation of tumor necrosis factor-alpha gene and protein expression in adult feline myocardium. Circ Res 81:187–195 PubMedCAS Google Scholar
Yue P, Massie BM, Simpson PC, Long CS (1998) Cytokine expression increases in nonmyocytes from rats with postinfarction heart failure. Am J Physiol 275:H250–H258 PubMedCAS Google Scholar
Meldrum DR, Cleveland JC Jr, Cain BS, Meng X, Harken AH (1998) Increased myocardial tumor necrosis factor-alpha in a crystalloid-perfusedmodel of cardiac ischemia-reperfusion injury. Ann Thorac Surg 65:439–443. doi:10.1016/S0003-4975(97)01297-6 PubMedCAS Google Scholar
Torre-Amione G, Kapadia S, Benedict C, Oral H, Young JB, Mann DL (1996) Proinflammatory cytokine levels in patients with depressed left ventricular ejection fraction: a report from the Studies of Left Ventricular Dysfunction (SOLVD). J Am Coll Cardiol 27:1201–1206. doi:10.1016/0735-1097(95)00589-7 PubMedCAS Google Scholar
Rauchhaus M, Doehner W, Francis DP et al (2000) Plasma cytokine parameters and mortality in patients with chronic heart failure. Circulation 102:3060–3067 PubMedCAS Google Scholar
Testa M, Yeh M, Lee P et al (1996) Circulating levels of cytokines and their endogenous modulators in patients with mild to severe congestive heart failure due to coronary artery disease or hypertension. J Am Coll Cardiol 28:964–971. doi:10.1016/S0735-1097(96)00268-9 PubMedCAS Google Scholar
Torre-Amione G, Stetson SJ, Youker KA et al (1999) Decreased expression of tumor necrosis factor-alpha in failing human myocardium after mechanical circulatory support: a potential mechanism for cardiac recovery. Circulation 100:1189–1193 PubMedCAS Google Scholar
Pagani FD, Baker LS, Hsi C, Knox M, Fink MP, Visner MS (1992) Left ventricular systolic and diastolic dysfunction after infusion of tumor necrosis factor-alpha in conscious dogs. J Clin Invest 90:389–398. doi:10.1172/JCI115873 PubMedCAS Google Scholar
Eichenholz PW, Eichacker PQ, Hoffman WD et al (1992) Tumor necrosis factor challenges in canines: patterns of cardiovascular dysfunction. Am J Physiol 263:H668–H675 PubMedCAS Google Scholar
Eichacker PQ, Hoffman WD, Farese A et al (1991) TNF but not IL-1 in dogs causes lethal lung injury and multiple organ dysfunction similar to human sepsis. J Appl Physiol 71:1979–1989 PubMedCAS Google Scholar
Finkel MS, Oddis CV, Jacob TD, Watkins SC, Hattler BG, Simmons RL (1992) Negative inotropic effects of cytokines on the heart mediated by nitric oxide. Science 257:387–389. doi:10.1126/science.1631560 PubMedCAS Google Scholar
Murray DR, Freeman GL (1996) Tumor necrosis factor-alpha induces a biphasic effect on myocardial contractility in conscious dogs. Circ Res 78:154–160 PubMedCAS Google Scholar
Bozkurt B, Kribbs SB, Clubb FJ Jr et al (1998) Pathophysiologically relevant concentrations of tumor necrosis factor-alpha promote progressive left ventricular dysfunction and remodeling in rats. Circulation 97:1382–1391 PubMedCAS Google Scholar
Kubota T, McTiernan CF, Frye CS et al (1997) Dilated cardiomyopathy in transgenic mice with cardiac-specific overexpression of tumor necrosis factor-alpha. Circ Res 81:627–635 PubMedCAS Google Scholar
Nakamura K, Fushimi K, Kouchi H et al (1998) Inhibitory effects of antioxidants on neonatal rat cardiac myocyte hypertrophy induced by tumor necrosis factor-alpha and angiotensin II. Circulation 98:794–799 PubMedCAS Google Scholar
Suematsu N, Tsutsui H, Wen J et al (2003) Oxidative stress mediates tumor necrosis factor-alpha-induced mitochondrial DNA damage and dysfunction in cardiac myocytes. Circulation 107:1418–1423. doi:10.1161/01.CIR.0000055318.09997.1F PubMedCAS Google Scholar
Bianchi P, Kunduzova O, Masini E et al (2005) Oxidative stress by monoamine oxidase mediates receptor-independent cardiomyocyte apoptosis by serotonin and postischemic myocardial injury. Circulation 22:3297–3305. doi:10.1161/CIRCULATIONAHA.104.528133 Google Scholar
Vlessis AA, Muller P, Bartos D, Trunkey D (1991) Mechanism of peroxide-induced cellular injury in cultured adult cardiac myocytes. FASEB J 5:2600–2605 PubMedCAS Google Scholar
Li YY, Feng YQ, Kadokami T et al (2000) Myocardial extracellular matrix remodeling in transgenic mice overexpressing tumor necrosis factor alpha can be modulated by anti-tumor necrosis factor alpha therapy. Proc Natl Acad Sci USA 97:12746–12751. doi:10.1073/pnas.97.23.12746 PubMedCAS Google Scholar
Shen J, O’Brein D, Yi X (2006) Matrix metalloproteinases-2 contributes to tumor necrosis factor alpha induced apoptosis in cultured rat cardiac myocytes. Biochem Biophys Res Commun 347:1011–1120. doi:10.1016/j.bbrc.2006.07.002 PubMedCAS Google Scholar
Krown KA, Page MT, Nguyen C et al (1996) Tumor necrosis factor alpha-induced apoptosis in cardiac myocytes. Involvement of the sphingolipid signaling cascade in cardiac cell death. J Clin Invest 15:2854–2865. doi:10.1172/JCI119114 Google Scholar
Cleutjens JP, Kandala JC, Guarda E, Guntaka RV, Weber KT (1995) Regulation of collagen degradation in the rat myocardium after infarction. J Mol Cell Cardiol 27:1281–1292. doi:10.1016/S0022-2828(05)82390-9 PubMedCAS Google Scholar
Natanson C, Eichenholz PW, Danner RL et al (1989) Endotoxin and tumor necrosis factor challenges in dogs simulate the cardiovascular profile of human septic shock. J Exp Med 169:823–832. doi:10.1084/jem.169.3.823 PubMedCAS Google Scholar
Castagnoli C, Stella M, Berthod C, Magliacani G, Richiardi PM (1993) TNF production and hypertrophic scarring. Cell Immunol 147:51–563. doi:10.1006/cimm.1993.1047 PubMedCAS Google Scholar
Rawdanowicz TJ, Hampton AL, Nagase H, Woolley DE, Salamonsen LA (1994) Matrix metalloproteinase production by cultured human endometrial stromal cells: identification of interstitial collagenase, gelatinase-A, gelatinase-B, and stromelysin-1 and their differential regulation by interleukin-1 alpha and tumor necrosis factor-alpha. J Clin Endocrinol Metab 79:530–536. doi:10.1210/jc.79.2.530 PubMedCAS Google Scholar
Gottschall PE, Yu X (1995) Cytokines regulate gelatinase A and B (matrix metalloproteinase 2 and 9) activity in cultured rat astrocytes. J Neurochem 64:1513–1520 ArticlePubMedCAS Google Scholar
Mann DL, McMurray JJ, Packer M et al (2004) Targeted anticytokine therapy in patients with chronic heart failure: results of the Randomized Etanercept Worldwide Evaluation (RENEWAL). Circulation 109:1594–1602. doi:10.1161/01.CIR.0000124490.27666.B2 PubMedCAS Google Scholar
Bozkurt B, Torre-Amione G, Warren MS et al (2001) Results of targeted anti-tumor necrosis factor therapy with etanercept (ENBREL) in patients with advanced heart failure. Circulation 103:1044–1047 PubMedCAS Google Scholar
Sliwa K, Skudicky D, Candy G, Wisenbaugh T, Sareli P (1998) Randomized investigation of effects of pentoxifylline on left-ventricular performance in idiopathic dilated cardiomyopathy. Lancet 351:1091–1093. doi:10.1016/S0140-6736(97)09338-0 PubMedCAS Google Scholar
Mohler KM, Sleath PR, Fitzner JN et al (1994) Protection against a lethal dose of endotoxin by an inhibitor of tumour necrosis factor processing. Nature 370:218–220. doi:10.1038/370218a0 PubMedCAS Google Scholar
Moreira AL, Sampaio EP, Zmuidzinas A, Frindt P, Smith KA, Kaplan G (1993) Thalidomide exerts its inhibitory action on tumor necrosis factor alpha by enhancing mRNA degradation. J Exp Med 177:1675–1680. doi:10.1084/jem.177.6.1675 PubMedCAS Google Scholar
Parrillo JE, Cunnion RE, Epstein SE et al (1989) A prospective, randomized, controlled trial of prednisone for dilated cardiomyopathy. N Engl J Med 321:1061–1068 PubMedCAS Google Scholar
Berthonneche C, Sulpice T, Boucher F et al (2004) New insights into the pathological role of TNF-alpha in early cardiac dysfunction and subsequent heart failure after infarction in rats. Am J Physiol Heart Circ Physiol 287:H340–H350. doi:10.1152/ajpheart.01210.2003 PubMedCAS Google Scholar
Fiorentino DF, Zlotnik A, Mosmann TR, Howard M, O’Garra A (1991) IL-10 inhibits cytokine production by activated macrophages. J Immunol (Baltimore, Md.: 1950) 147:3815–3822 CAS Google Scholar
Fiorentino DF, Zlotnik A, Vieira P, Mosmann TR, Howard M, Moore KW et al (1991) IL-10 acts on the antigen-presenting cell to inhibit cytokine production by Th1 cells. J Immunol (Baltimore, Md.: 1950) 146:3444–3451 CAS Google Scholar
Wang P, Wu P, Siegel MI, Egan RW, Billah MM (1995) Interleukin (IL)-10 inhibits nuclear factor kappa B (NF kappa B) activation in human monocytes. IL-10 and IL-4 suppress cytokine synthesis by different mechanisms. J Biol Chem 270:9558–9563. doi:10.1074/jbc.270.16.9558 PubMedCAS Google Scholar
Levens JM, Gordon J, Gregory CD (2000) Micro-environmental factors in the survival of human B-lymphoma cells. Cell Death Differ 7:59–69. doi:10.1038/sj.cdd.4400636 PubMedCAS Google Scholar
Moore KW, Vieira P, Fiorentino DF et al (1990) Homology of cytokine synthesis inhibitory factor (IL-10) to the Epstein-Barr virus gene BCRFI. Science 248:1230–1234. doi:10.1126/science.2161559 PubMedCAS Google Scholar
Platzer C, Docke WD, Volk HD, Prosch S (2000) Catecholamines trigger IL-10 release in acute systemic stress reaction by direct stimulation of its promoter/enhancer activity in monocytic cells. J Neuroimmunol 105:31–38. doi:10.1016/S0165-5728(00)00205-8 PubMedCAS Google Scholar
Barsig J, Kusters S, Vogt K, Volk HD, Tiegs G, Wendel A (1995) Lipopolysaccharide-induced IL-10 in mice: role of endogenous TNF-alpha. Eur J Immunol 25:2888–2893. doi:10.1002/eji.1830251027 PubMedCAS Google Scholar
Meisel C, Vogt K, Platzer C, Randow F, Liebenthal C, Volk HD (1996) Differential regulation of monocytic tumor necrosis factor-alpha and interleukin-10 expression. Eur J Immunol 26:1580–1586. doi:10.1002/eji.1830260726 PubMedCAS Google Scholar
Ma W, Lim W, Gee K et al (2001) The p38 mitogen-activated kinase pathway regulates the human interleukin-10 promoter via the activation of Sp1 transcription factor in lipopolysaccharide-stimulated human macrophages. J Biol Chem 276:13664–13674 PubMedCAS Google Scholar
Walter MR (2002) Strucure of interleukin-10/interleukin-10R1 complex: a paradigm for class 2 cytokine activation. Immunol Res 26:303–308. doi:10.1385/IR:26:1-3:303 PubMedCAS Google Scholar
Shanley TP, Schmal H, Friedl HP, Jones ML, Ward PA (1995) Regulatory effects of intrinsic IL-10 in IgG immune complex-induced lung injury. J Immunol (Baltimore, Md.: 1950) 154:3454–3460 CAS Google Scholar
Furukawa Y, Becker G, Stinn JL, Shimizu K, Libby P, Mitchell RN (1999) Interleukin-10 (IL-10) augments allograft arterial disease: paradoxical effects of IL-10 in vivo. Am J Pathol 155:1929–1939 PubMedCAS Google Scholar
vander Poll T, Marchant A, Buurman WA et al (1995) Endogenous IL-10 protects mice from death during septic peritonitis. J Immunol 155:5397–5401 CAS Google Scholar
Standiford TJ, Strieter RM, Lukacs NW, Kunkel SL (1995) Neutralization of IL-10 increases lethality in endotoxemia. Cooperative effects of macrophage inflammatory protein-2 and tumor necrosis factor. J Immunol (Baltimore, Md.: 1950) 155:2222–2229 CAS Google Scholar
Lang R, Rutschman RL, Greaves DR, Murray PJ (2002) Autocrine deactivation of macrophages in transgenic mice constitutively overexpressing IL-10 under control of the human CD68 promoter. J Immunol (Baltimore, Md.: 1950) 168:3402–3411 CAS Google Scholar
Hess PJ, Seeger JM, Huber TS et al (1997) Exogenously administered interleukin-10 decreases pulmonary neutrophil infiltration in a tumor necrosis factor-dependent murine model of acute visceral ischemia. J Vasc Surg 26:113–118. doi:10.1016/S0741-5214(97)70154-X PubMedCAS Google Scholar
Engles RE, Huber TS, Zander DS et al (1997) Exogenous human recombinant interleukin-10 attenuates hindlimb ischemia-reperfusion injury. J Surg Res 69:425–428. doi:10.1006/jsre.1997.5109 PubMedCAS Google Scholar
Byrne A, Reen DJ (2002) Lipopolysaccharide induces rapid production of IL-10 by monocytes in the presence of apoptotic neutrophils. J Immunol (Baltimore, Md.: 1950) 168:1968–1977 CAS Google Scholar
Levy Y, Brouet JC (1994) Interleukin-10 prevents spontaneous death of germinal center B cells by induction of the bcl-2 protein. J Clin Invest 93:424–428. doi:10.1172/JCI116977 PubMedCAS Google Scholar
Finbloom DS, Winestock KD (1995) IL-10 induces the tyrosine phosphorylation of tyk2 and Jak1 and the differential assembly of STAT1 alpha and STAT3 complexes in human T cells and monocytes. J Immunol (Baltimore, Md.: 1950) 155:1079–1090 CAS Google Scholar
Clarke CJ, Hales A, Hunt A, Foxwell BM (1998) IL-10-mediated suppression of TNF-alpha production is independent of its ability to inhibit NF kappa B activity. Eur J Immunol 28:1719–1726. doi:10.1002/(SICI)1521-4141(199805)28:05<1719::AID-IMMU1719>3.0.CO;2-Q PubMedCAS Google Scholar
Schottelius AJ, Mayo MW, Sartor RB, Baldwin AS Jr (1999) Interleukin-10 signaling blocks inhibitor of kappaB kinase activity and nuclear factor kappaB DNA binding. J Biol Chem 274:31868–31874. doi:10.1074/jbc.274.45.31868 PubMedCAS Google Scholar
Driessler F, Venstrom K, Sabat R, Asadullah K, Schottelius AJ (2004) Molecular mechanisms of interleukin-10-mediated inhibition of NF-kappaB activity: a role for p50. Clin Exp Immunol 135:64–73. doi:10.1111/j.1365-2249.2004.02342.x PubMedCAS Google Scholar
Cassatella MA, Gasperini S, Bovolenta C et al (1999) Interleukin-10 (IL-10) selectively enhances CIS3/SOCS3 mRNA expression in human neutrophils: evidence for an IL-10-induced pathway that is independent of STAT protein activation. Blood 94:2880–2889 PubMedCAS Google Scholar
Ito S, Ansari P, Sakatsume M et al (1999) Interleukin-10 inhibits expression of both interferon alpha- and interferon gamma-induced genes by suppressing tyrosine phosphorylation of STAT1. Blood 93:1456–1463 PubMedCAS Google Scholar
Donnelly RP, Dickensheets H, Finbloom DS (1999) The interleukin-10 signal transduction pathway and regulation of gene expression in mononuclear phagocytes. J Interferon Cytokine Res 19:563–573. doi:10.1089/107999099313695 PubMedCAS Google Scholar
Berlato C, Cassatella MA, Kinjyo I, Gatto L, Yoshimura A, Bazzoni F (2002) Involvement of suppressor of cytokine signaling-3 as a mediator of the inhibitory effects of IL-10 on lipopolysaccharide-induced macrophage activation. J Immunol (Baltimore, Md.: 1950) 168:6404–6411 CAS Google Scholar
Lee TS, Chau LY (2002) Heme oxygenase-1 mediates the anti-inflammatory effect of interleukin-10 in mice. Nat Med 8:240–246. doi:10.1038/nm0302-240 PubMedCAS Google Scholar
Pezzilli R, Billi P, Miniero R, Dig BB (1997) Serum interleukin-10 in human acute pancreatitis. Dis Sci 42:1469–1472. doi:10.1023/A:1018814710291 CAS Google Scholar
Kwon OJ (1997) The role of nitric oxide in the immune response of tuberculosis Korean. Med Sci 12:481–487 CAS Google Scholar
Gougerot-Podicalo MA, Elbim C, Chollet-Martin S (1996) Modulation by pro- and anti-inflammatory cytokines of the oxidative burst of human neutrophils. Pathol Biol (Paris) 44:36–41 CAS Google Scholar
Dandona P, Mohanty P, Hamouda W, Aljada A, Kumbkarni Y, Garg R (1999) Effect of dexamethasone on reactive oxygen species generation by leukocytes and plasma interleukin-10 concentrations: a pharmacodynamic study. Clin Pharmacol Ther 66:58–65. doi:10.1016/S0009-9236(99)70054-8 PubMedCAS Google Scholar
Mulligan MS, Jones ML, Vaporciyan AA, Howard MC, Ward PA (1993) Protective effects of IL-4 and IL-10 against immune complex-induced lung injury. J Immunol (Baltimore, Md.: 1950) 151:5666–5674 CAS Google Scholar
Shanley TP, Schmal H, Friedl HP, Jones ML, Ward PA (1995) Role of macrophage inflammatory protein-1 alpha (MIP-1 alpha) in acute lung injury in rats. J Immunol (Baltimore, Md.: 1950) 154:4793–4802 CAS Google Scholar
Gunnett CA, Heistad DD, Berg DJ, Faraci FM (2000) IL-10 deficiency increases superoxide and endothelial dysfunction during inflammation. Am J Physiol Heart Circ Physiol 279:H1555–H1562 PubMedCAS Google Scholar
Keel M, Ungethum U, Steckholzer E et al (1997) Interleukin-10 counterregulates proinflammatory cytokine-induced inhibition of neutrophil apoptosis during severe sepsis. Blood 90:3356–3363 PubMedCAS Google Scholar
Adamopoulos S, Parissis JT, Paraskevaidis I et al (2003) Effects of growth hormone on circulating cytokine network, and left ventricular contractile performance and geometry in patients with idiopathic dilated cardiomyopathy. Eur Heart J 24:2186–2196. doi:10.1016/S0195-668X(03)00480-9 PubMedCAS Google Scholar
El Azab SR, Rosseel PM, de Lange JJ et al (2002) Dexamethasone decreases the pro- to anti inflammatory cytokine ratio during cardiac surgery. Br J Anaesth 88:496–501. doi:10.1093/bja/88.4.496 PubMedCAS Google Scholar
Giomarelli P, Scolletta S, Borrelli E, Biagioli B (2003) Myocardial and lung injury after cardiopulmonary bypass: role of interleukin (IL)-10. Ann Thorac Surg 76:117–123. doi:10.1016/S0003-4975(03)00194-2 PubMed Google Scholar
Lacraz S, Nicod LP, Chicheportiche R, Welgus HG, Dayer JM (1995) IL-10 inhibits metalloproteinase and stimulates TIMP-1 production in human mononuclear phagocytes. J Clin Invest 96:2304–2310. doi:10.1172/JCI118286 PubMedCAS Google Scholar
Ksontini R, MacKay SL, Moldawer LL (1998) Revisiting the role of tumor necrosis factor alpha and the response to surgical injury and inflammation. Arch Surg 133:558–567. doi:10.1001/archsurg.133.5.558 PubMedCAS Google Scholar
Cassatella MA, Meda L, Gasperini S, Calzetti F, Bonora S (1994) Interleukin 10 (IL-10) upregulates IL-1 receptor antagonist production from lipopolysaccharide-stimulated human polymorphonuclear leukocytes by delaying mRNA degradation. J Exp Med 179:1695–1699. doi:10.1084/jem.179.5.1695 PubMedCAS Google Scholar
Kasama T, Strieter RM, Lukacs NW, Lincoln PM, Burdick MD, Kunkel SL (1995) Interleukin-10 expression and chemokine regulation during the evolution of murine type II collagen-induced arthritis. J Clin Invest 95:2868–2876. doi:10.1172/JCI117993 PubMedCAS Google Scholar
Wang P, Wu P, Anthes JC, Siegel MI, Egan RW, Billah MM (1994) Interleukin-10 inhibits interleukin-8 production in human neutrophils. Blood 83:2678–2683 PubMedCAS Google Scholar
Gerard C, Bruyns C, Marchant A et al (1993) Interleukin 10 reduces the release of tumor necrosis factor and prevents lethality in experimental endotoxemia. J Exp Med 177:547–550. doi:10.1084/jem.177.2.547 PubMedCAS Google Scholar
Stumpf C, Lehner C, Yilmaz A, Daniel WG, Garlichs CD (2003) Decrease of serum levels of the anti-inflammatory cytokine interleukin-10 in patients with advanced chronic heart failure. Clin Sci 105:45–50. doi:10.1042/CS20020359 PubMedCAS Google Scholar
Waehre T, Halvorsen B, Damas JK et al (2002) Inflammatory imbalance between IL-10 and TNFalpha in unstable angina potential plaque stabilizing effects of IL-10. Eur J Clin Invest 32:803–810. doi:10.1046/j.1365-2362.2002.01069.x PubMedCAS Google Scholar
Lentsch AB, Shanley TP, Sarma V, Ward PA (1997) In vivo suppression of NF-kappa B and preservation of I kappa B alpha by interleukin-10 and interleukin-13. J Clin Invest 15:2443–2448. doi:10.1172/JCI119786 Google Scholar
Kelly A, Lynch E, Vereker Y et al (2001) The anti-inflammatory cytokine, interleukin (IL)-10, blocks the inhibitory effect of IL-1 beta on long term potentiation. A role for JNK. J Biol Chem 276:45564–45572. doi:10.1074/jbc.M108757200 PubMedCAS Google Scholar