TNFα in myocardial ischemia/reperfusion, remodeling and heart failure (original) (raw)
References
Kleinbongard P, Heusch G, Schulz R (2010) TNFα in atherosclerosis, myocardial ischemia/reperfusion and heart failure. Pharmacol Therap doi: 10.1016/j.pharmthera.2010.05.002
Carswell EA, Old LJ, Kassel RL, Green S, Fiore N, Williamson B (1975) An endotoxin-induced serum factor that causes necrosis of tumors. Proc Natl Acad Sci USA 72:3666–3670 PubMedCAS Google Scholar
Frangogiannis NG (2008) The immune system and cardiac repair. Pharmacol Res 58:88–111 PubMedCAS Google Scholar
Knuefermann P, Nemoto S, Baumgarten G, Misra A, Sivasubramanian N, Carabello BA, Vallejo JG (2002) Cardiac inflammation and innate immunity in septic shock: is there a role for toll-like receptors? Chest 121:1329–1336 PubMedCAS Google Scholar
Frantz S, Bauersachs J, Kelly RA (2005) Innate immunity and the heart. Curr Pharm Des 11:1279–1290 PubMedCAS Google Scholar
Huang CH, Vallejo JG, Kollias G, Mann DL (2009) Role of the innate immune system in acute viral myocarditis. Basic Res Cardiol 104:228–237 PubMedCAS Google Scholar
Valeur HS, Valen G (2009) Innate immunity and myocardial adaptation to ischemia. Basic Res Cardiol 104:22–32 PubMedCAS Google Scholar
Udalova IA, Kwiatkowski D (2001) Interaction of AP-1 with a cluster of NF-kappa B binding elements in the human TNF promoter region. Biochem Biophys Res Commun 289:25–33 PubMedCAS Google Scholar
Takashiba S, Shapira L, Amar S, Van Dyke TE (1993) Cloning and characterization of human TNF alpha promoter region. Gene 131:307–308 PubMedCAS Google Scholar
Mizuochi Y, Okajima K, Harada N, Molor-Erdene P, Uchiba M, Komura H, Tsuda T, Katsuya H (2007) Carvedilol, a nonselective beta-blocker, suppresses the production of tumor necrosis factor and tissue factor by inhibiting early growth response factor-1 expression in human monocytes in vitro. Transl Res 149:223–230 PubMedCAS Google Scholar
Zagariya A, Mungre S, Lovis R, Birrer M, Ness S, Thimmapaya B, Pope R (1998) Tumor necrosis factor alpha gene regulation: enhancement of C/EBPbeta-induced activation by c-Jun. Mol Cell Biol 18:2815–2824 PubMedCAS Google Scholar
Ray N, Kuwahara M, Takada Y, Maruyama K, Kawaguchi T, Tsubone H, Ishikawa H, Matsuo K (2006) c-Fos suppresses systemic inflammatory response to endotoxin. Int Immunol 18:671–677 PubMedCAS Google Scholar
Sato H, Watanabe A, Tanaka T, Koitabashi N, Arai M, Kurabayashi M, Yokoyama T (2003) Regulation of the human tumor necrosis factor-alpha promoter by angiotensin II and lipopolysaccharide in cardiac fibroblasts: different cis-acting promoter sequences and transcriptional factors. J Mol Cell Cardiol 35:1197–1205 PubMedCAS Google Scholar
Dai W, Chen H, Jiang J, Kong W, Wang Y (2010) Silencing MR-1 attenuates inflammatory damage in mice heart induced by AngII. Biochem Biophys Res Commun 391:1573–1578 PubMedCAS Google Scholar
Hikoso S, Yamaguchi O, Higuchi Y, Hirotani S, Takeda T, Kashiwase K, Watanabe T, Taniike M, Tsujimoto I, Asahi M, Matsumura Y, Nishida K, Nakajima H, Akira S, Hori M, Otsu K (2004) Pressure overload induces cardiac dysfunction and dilation in signal transducer and activator of transcription 6-deficient mice. Circulation 110:2631–2637 PubMed Google Scholar
Yeh CH, Chen TP, Wang YC, Lin YM, Lin PJ (2009) HO-1 activation can attenuate cardiomyocytic apoptosis via inhibition of NF-kappaB and AP-1 translocation following cardiac global ischemia and reperfusion. J Surg Res 155:147–156 PubMedCAS Google Scholar
Li C, Ha T, Liu L, Browder W, Kao RL (2000) Adenosine prevents activation of transcription factor NF-kappa B and enhances activator protein-1 binding activity in ischemic rat heart. Surgery 127:161–169 PubMedCAS Google Scholar
Maass DL, Hybki DP, White J, Horton JW (2002) The time course of cardiac NF-kappaB activation and TNF-alpha secretion by cardiac myocytes after burn injury: contribution to burn-related cardiac contractile dysfunction. Shock 17:293–299 PubMed Google Scholar
Chanani NK, Cowan DB, Takeuchi K, Poutias DN, Garcia LM, del Nido PJ, McGowan FX Jr (2002) Differential effects of amrinone and milrinone upon myocardial inflammatory signaling. Circulation 106:I284–I289 PubMed Google Scholar
Wright G, Singh IS, Hasday JD, Farrance IK, Hall G, Cross AS, Rogers TB (2002) Endotoxin stress-response in cardiomyocytes: NF-κB activation and tumor necrosis factor-α expression. Am J Physiol Heart Circ Physiol 282:H872–H879 PubMedCAS Google Scholar
Zhu H, Shan L, Schiller PW, Mai A, Peng T (2010) Histone deacetylase-3 activation promotes tumor necrosis factor-α (TNF-α) expression in cardiomyocytes during lipopolysaccharide stimulation. J Biol Chem 285:9429–9436 PubMedCAS Google Scholar
Black RA, Rauch CT, Kozlosky CJ, Peschon JJ, Slack JL, Wolfson MF, Castner BJ, Stocking KL, Reddy P, Srinivasan S, Nelson N, Boiani N, Schooley KA, Gerhart M, Davis R, Fitzner JN, Johnson RS, Paxton RJ, March CJ, Cerretti DP (1997) A metalloproteinase disintegrin that releases tumour-necrosis factor-α from cells. Nature 385:729–733 PubMedCAS Google Scholar
Eck MJ, Sprang SR (1989) The structure of tumor necrosis factor-α at 2.6 A resolution. Implications for receptor binding. J Biol Chem 264:17595–17605 PubMedCAS Google Scholar
Roman-Campos D, Duarte HL, Sales PA Jr, Natali AJ, Ropert C, Gazzinelli RT, Cruz JS (2009) Changes in cellular contractility and cytokines profile during Trypanosoma cruzi infection in mice. Basic Res Cardiol 104:238–246 PubMedCAS Google Scholar
Lula JF, Rocha MO, Nunes MC, Ribeiro AL, Teixeira MM, Bahia MT, Talvani A (2009) Plasma concentrations of tumour necrosis factor-alpha, tumour necrosis factor-related apoptosis-inducing ligand, and FasLigand/CD95L in patients with Chagas cardiomyopathy correlate with left ventricular dysfunction. Eur J Heart Fail 11:825–831 PubMedCAS Google Scholar
Ba X, Gupta S, Davidson M, Garg NJ (2010) Trypanosoma cruzi induces the reactive oxygen species-PARP-1-relA pathway for up-regulation of cytokine expression in cardiomyocytes. J Biol Chem 285:11596–11606 PubMedCAS Google Scholar
Gilles S, Zahler S, Welsch U, Sommerhoff CP, Becker BF (2003) Release of TNF-α during myocardial reperfusion depends on oxidative stress and is prevented by mast cell stabilizers. Cardiovasc Res 60:608–616 PubMedCAS Google Scholar
Nurnberger W, Platonov A, Stannigel H, Beloborodov VB, Michelmann I, von Kries R, Burdach S, Gobel U (1995) Definition of a new score for severity of generalized Neisseria meningitidis infection. Eur J Pediatr 154:896–900 PubMedCAS Google Scholar
Waage A, Sorensen M, Stordal B (1990) Differential effect of oxpentifylline on tumour necrosis factor and interleukin-6 production. Lancet 335:543 PubMedCAS Google Scholar
Dörge H, Schulz R, Belosjorow S, Post H, van de Sand A, Konietzka I, Frede S, Hartung T, Vinten-Johansen J, Youker KA, Entman ML, Erbel R, Heusch G (2002) Coronary microembolization: the role of TNFα in contractile dysfunction. J Mol Cell Cardiol 34:51–62 PubMed Google Scholar
Reil JC, Gilles S, Zahler S, Brandl A, Drexler H, Hultner L, Matrisian LM, Welsch U, Becker BF (2007) Insights from knock-out models concerning postischemic release of TNFα from isolated mouse hearts. J Mol Cell Cardiol 42:133–141 PubMedCAS Google Scholar
Skyschally A, Gres P, Hoffmann S, Haude M, Erbel R, Schulz R, Heusch G (2007) Bidirectional role of tumor necrosis factor-α in coronary microembolization: progressive contractile dysfunction versus delayed protection against infarction. Circ Res 100:140–146 PubMedCAS Google Scholar
Skyschally A, Leineweber K, Gres P, Haude M, Erbel R, Heusch G (2006) Coronary microembolization. Basic Res Cardiol 101:373–382 PubMed Google Scholar
Heusch P, Skyschally A, Leineweber K, Haude M, Erbel R, Heusch G (2007) The interaction of coronary microembolization and ischemic preconditioning: a third window of cardioprotection through TNF-alpha. Arch Med Sci 2:83–92 Google Scholar
Thielmann M, Dörge H, Martin C, Belosjorow S, Schwanke U, van de Sand A, Konietzka I, Büchert A, Krüger A, Schulz R, Heusch G (2002) Myocardial dysfunction with coronary microembolization: signal transduction through a sequence of nitric oxide, tumor necrosis factor-α and sphingosine. Circ Res 90:807–813 PubMedCAS Google Scholar
Boczkowski J, Philip I, Bernard C, Merval R, Desmonts J-M, Aubier M (1995) Effects of inhibition of nitric oxide synthesis on TNFα serum levels in E. coli endotoxemic rats. Life Sci 57:147–152 Google Scholar
Kalra D, Baumgarten G, Dibbs Z, Seta Y, Sivasubramanian N, Mann DL (2000) Nitric oxide provokes tumor necrosis factor-α expression in adult feline myocardium through a cGMP-dependent pathway. Circulation 102:1302–1307 PubMedCAS Google Scholar
Bruunsgaard H, Skinhoj P, Pedersen AN, Schroll M, Pedersen BK (2000) Ageing, tumour necrosis factor-alpha (TNF-α) and atherosclerosis. Clin Exp Immunol 121:255–260 PubMedCAS Google Scholar
Belmin J, Bernard C, Corman B, Merval R, Esposito B, Tedgui A (1995) Increased production of tumor necrosis factor and interleukin-6 by arterial wall of aged rats. Am J Physiol 268:H2288–H2293 PubMedCAS Google Scholar
Csiszar A, Ungvari Z, Koller A, Edwards JG, Kaley G (2004) Proinflammatory phenotype of coronary arteries promotes endothelial apoptosis in aging. Physiol Genomics 17:21–30 PubMedCAS Google Scholar
Petersen AM, Pedersen BK (2005) The anti-inflammatory effect of exercise. J Appl Physiol 98:1154–1162 PubMedCAS Google Scholar
Packard RR, Libby P (2008) Inflammation in atherosclerosis: from vascular biology to biomarker discovery and risk prediction. Clin Chem 54:24–38 PubMedCAS Google Scholar
Dandona P, Aljada A, Bandyopadhyay A (2004) Inflammation: the link between insulin resistance, obesity and diabetes. Trends Immunol 25:4–7 PubMedCAS Google Scholar
Gleeson M (2007) Immune function in sport and exercise. J Appl Physiol 103:693–699 PubMedCAS Google Scholar
Pedersen BK, Fischer CP (2007) Physiological roles of muscle-derived interleukin-6 in response to exercise. Curr Opin Clin Nutr Metab Care 10:265–271 PubMedCAS Google Scholar
Alexandraki K, Piperi C, Kalofoutis C, Singh J, Alaveras A, Kalofoutis A (2006) Inflammatory process in type 2 diabetes: the role of cytokines. Ann N Y Acad Sci 1084:89–117 PubMedCAS Google Scholar
Zeyda M, Farmer D, Todoric J, Aszmann O, Speiser M, Gyori G, Zlabinger GJ, Stulnig TM (2007) Human adipose tissue macrophages are of an anti-inflammatory phenotype but capable of excessive pro-inflammatory mediator production. Int J Obes (Lond) 31:1420–1428 CAS Google Scholar
Coppack SW (2001) Pro-inflammatory cytokines and adipose tissue. Proc Nutr Soc 60:349–356 PubMedCAS Google Scholar
Bullo M, Garcia-Lorda P, Megias I, Salas-Salvado J (2003) Systemic inflammation, adipose tissue tumor necrosis factor, and leptin expression. Obes Res 11:525–531 PubMedCAS Google Scholar
Gil A, Maria AC, Gil-Campos M, Canete R (2007) Altered signalling and gene expression associated with the immune system and the inflammatory response in obesity. Br J Nutr 98 Suppl 1:S121–S126 Google Scholar
Bruunsgaard H (2005) Physical activity and modulation of systemic low-level inflammation. J Leukoc Biol 78:819–835 PubMedCAS Google Scholar
Van Guilder GP, Hoetzer GL, Greiner JJ, Stauffer BL, DeSouza CA (2006) Influence of metabolic syndrome on biomarkers of oxidative stress and inflammation in obese adults. Obesity (Silver Spring) 14:2127–2131 Google Scholar
Bruunsgaard H, Pedersen M, Pedersen BK (2001) Aging and proinflammatory cytokines. Curr Opin Hematol 8:131–136 PubMedCAS Google Scholar
Aker S, Belosjorow S, Konietzka I, Duschin A, Martin C, Heusch G, Schulz R (2003) Serum but not myocardial TNF-α concentration is increased in pacing-induced heart failure in rabbits. Am J Physiol Regul Integr Comp Physiol 285:R463–R469 PubMedCAS Google Scholar
Marin-Garcia J, Goldenthal MJ, Moe GW (2001) Abnormal cardiac and skeletal muscle mitochondrial function in pacing-induced cardiac failure. Cardiovasc Res 52:103–110 PubMedCAS Google Scholar
Recchia FA, Bernstein RD, Seghal PB, Ferreri NR, Hintze TH (2000) Cytokines are not a requisite part of the pathophysiology leading to cardiac decompensation. Proc Soc Exp Biol Med 223:47–52 PubMedCAS Google Scholar
Kubota T, McNamara DM, Wang JJ, Trost M, McTiernan CF, Mann DL, Feldman AM (1998) Effects of tumor necrosis factor gene polymorphisms on patients with congestive heart failure. VEST investigators for TNF genotype analysis. Vesnarinone survival trial. Circulation 97:2499–2501 PubMedCAS Google Scholar
Aukrust P, Ueland T, Lien E, Bendtzen K, Muller F, Andreassen AK, Nordoy I, Aass H, Espevik T, Simonsen S, Froland SS, Gullestad L (1999) Cytokine network in congestive heart failure secondary to ischemic or idiopathic dilated cardiomyopathy. Am J Cardiol 83:376–382 PubMedCAS Google Scholar
Ceconi C, Curello S, Bachetti T, Corti A, Ferrari R (1998) Tumor necrosis factor in congestive heart failure: a mechanism of disease for the new millennium? Prog Cardiovasc Dis 41:25–30 PubMedCAS Google Scholar
Levine B, Kalman J, Mayer L, Fillit HM, Packer M (1990) Elevated circulating levels of tumor necrosis factor in severe chronic heart failure. N Engl J Med 323:236–241 PubMedCAS Google Scholar
Munger MA, Johnson B, Callahan KS, Gilbert EM (1996) Circulating concentrations of proinflammatory cytokines in mild or moderate heart failure secondary to ischemic or idiopathic dilated cardiomyopathy. Am J Cardiol 77:723–727 PubMedCAS Google Scholar
Petretta M, Gian L, Condorelli MD, Spinelli L, Scopacasa F, de Caterina M, Leosco D, Vicario MLE, Bonaduce D (2000) Circulating levels of cytokines and their site of production in patients with mild to severe chronic heart failure. Am Heart J 140:e28 PubMedCAS Google Scholar
Torre-Amione G, Kapadia S, Lee J, Durand JB, Bies RD, Young JB, Mann DL (1996) Tumor necrosis factor-α and tumor necrosis factor receptors in the failing human heart. Circulation 93:704–711 PubMedCAS Google Scholar
Ghezzi P, Dinarello CA, Bianchi M, Rosandich ME, Repine JE, White CW (1991) Hypoxia increases production of interleukin-1 and tumor necrosis factor by human mononuclear cells. Cytokine 3:189–194 PubMedCAS Google Scholar
Spengler RN, Allen RM, Remick DG, Strieter RM, Kunkel SL (1990) Stimulation of α-adrenergic receptor augments the production of macrophage-derived tumor necrosis factor. J Immunol 145:1430–1434 PubMedCAS Google Scholar
Jensen JC, Buresh C, Norton JA (1990) Lactic acidosis increases tumor necrosis factor secretion and transcription in vitro. J Surg Res 49:350–353 PubMedCAS Google Scholar
Zwaka TP, Manolov D, Ozdemir C, Marx N, Kaya Z, Kochs M, Hoher M, Hombach V, Torzewski J (2002) Complement and dilated cardiomyopathy: a role of sublytic terminal complement complex-induced tumor necrosis factor-α synthesis in cardiac myocytes. Am J Pathol 161:449–457 PubMedCAS Google Scholar
Torre-Amione G, Stetson S, Vooletich M, Jacobs V, Youker KA (1999) Tumor necrosis factor-α in the failing human heart: does it play a role in disease progression? Z Kardiol 88 suppl 3:III24–III27 Google Scholar
Chen Y, Pat B, Zheng J, Cain L, Powell P, Shi K, Sabri A, Husain A, Dell’Italia LJ (2010) Tumor necrosis factor-alpha produced in cardiomyocytes mediates a predominant myocardial inflammatory response to stretch in early volume overload. J Mol Cell Cardiol 49:70–78 PubMedCAS Google Scholar
Vistnes M, Waehre A, Nygard S, Sjaastad I, Andersson KB, Husberg C, Christensen G (2010) Circulating cytokine levels in mice with heart failure are etiology dependent. J Appl Physiol 108:1357–1364 PubMedCAS Google Scholar
Genth-Zotz S, von Haehling S, Bolger AP, Kalra PR, Wensel R, Coats AJS, Anker SD (2002) Pathophysiologic quantities of endotoxin-induced tumor necrosis factor-alpha release in whole blood from patients with chronic heart failure. Am J Cardiol 90:1226–1230 PubMedCAS Google Scholar
Sandek A, Rauchhaus M, Anker SD, von HS (2008) The emerging role of the gut in chronic heart failure. Curr Opin Clin Nutr Metab Care 11:632–639 PubMed Google Scholar
Anker SD, Egerer KR, Volk HD, Kox WJ, Poole-Wilson P, Coats AJ (1997) Elevated soluble CD14 receptors and altered cytokines in chronic heart failure. Am J Cardiol 86:1054–1055 Google Scholar
Bolger AP, Anker SD (2000) Tumour necrosis factor in chronic heart failure. A peripheral view on pathogenesis, clinical manifestations and therapeutic implications. Drugs 60:1245–1257 PubMedCAS Google Scholar
Conraads VM, Jorens PG, De Clerck LS, Van Saene HK, Ieven MM, Bosmans JM, Schuerwegh A, Bridts CH, Wuyts F, Stevens WJ, Anker SD, Rauchhaus M, Vrints CJ (2004) Selective intestinal decontamination in advanced chronic heart failure: a pilot trial. Eur J Heart Fail 6:483–491 PubMedCAS Google Scholar
Rauchhaus M, Koloczek V, Volk H, Kemp M, Niebauer J, Francis DP, Coats AJ, Anker SD (2000) Inflammatory cytokines and the possible immunological role for lipoproteins in chronic heart failure. Int J Cardiol 76:125–133 PubMedCAS Google Scholar
Rauchhaus M, Clark AL, Doehner W, Davos C, Bolger A, Sharma R, Coats AJ, Anker SD (2003) The relationship between cholesterol and survival in patients with chronic heart failure. J Am Coll Cardiol 42:1933–1940 PubMedCAS Google Scholar
Charach G, George J, Roth A, Rogowski O, Wexler D, Sheps D, Grosskopf I, Weintraub M, Keren G, Rubinstein A (2010) Baseline low-density lipoprotein cholesterol levels and outcome in patients with heart failure. Am J Cardiol 105:100–104 PubMedCAS Google Scholar
Krack A, Sharma R, Figulla HR, Anker SD (2005) The importance of the gastrointestinal system in the pathogenesis of heart failure. Eur Heart J 26:2368–2374 PubMedCAS Google Scholar
Ito M, Takahashi H, Fuse K, Hirono S, Washizuka T, Kato K, Yamazaki F, Inano K, Furukawa T, Komada M, Aizawa Y (2000) Polymorphisms of tumor necrosis factor-α and interleukin-10 genes in Japanese patients with idiopathic dilated cardiomyopathy. Jpn Heart J 41:183–191 PubMedCAS Google Scholar
Kitsios G, Zintzaras E (2007) Genetic variation associated with ischemic heart failure: a HuGE review and meta-analysis. Am J Epidemiol 166:619–633 PubMed Google Scholar
Kadokami T, McTiernan CF, Kubota T, Frye CS, Feldman AM (2000) Sex-related survival differences in murine cardiomyopathy are associated with differences in TNF-receptor expression. J Clin Invest 106:589–597 PubMedCAS Google Scholar
Ksontini R, MacKay SL, Moldawer LL (1998) Revisiting the role of tumor necrosis factor α and the response to surgical injury and inflammation. Arch Surg 133:558–567 PubMedCAS Google Scholar
Black RA (2002) Tumor necrosis factor-alpha converting enzyme. Int J Biochem Cell Biol 34:1–5 PubMedCAS Google Scholar
Wang J, Al-Lamki RS, Zhang H, Kirkiles-Smith N, Gaeta ML, Thiru S, Pober JS, Bradley JR (2003) Histamine antagonizes tumor necrosis factor (TNF) signaling by stimulating TNF receptor shedding from the cell surface and Golgi storage pool. J Biol Chem 278:21751–21760 PubMedCAS Google Scholar
Kemper O, Wallach D (1993) Cloning and partial characterization of the promoter for the human p55 tumor necrosis factor (TNF) receptor. Gene 134:209–216 PubMedCAS Google Scholar
Rothe J, Bluethmann H, Gentz R, Lesslauer W, Steinmetz M (1993) Genomic organization and promoter function of the murine tumor necrosis factor receptor beta gene. Mol Immunol 30:165–175 PubMedCAS Google Scholar
Santee SM, Owen-Schaub LB (1996) Human tumor necrosis factor receptor p75/80 (CD120b) gene structure and promoter characterization. J Biol Chem 271:21151–21159 PubMedCAS Google Scholar
Kalthoff H, Roeder C, Brockhaus M, Thiele HG, Schmiegel W (1993) Tumor necrosis factor (TNF) up-regulates the expression of p75 but not p55 TNF receptors, and both receptors mediate, independently of each other, up-regulation of transforming growth factor α and epidermal growth factor receptor mRNA. J Biol Chem 268:2762–2766 PubMedCAS Google Scholar
Winzen R, Wallach D, Engelmann H, Nophar Y, Brakebusch C, Kemper O, Resch K, Holtmann H (1992) Selective decrease in cell surface expression and mRNA level of the 55-kDa tumor necrosis factor receptor during differentiation of HL-60 cells into macrophage-like but not granulocyte-like cells. J Immunol 148:3454–3460 PubMedCAS Google Scholar
Winzen R, Wallach D, Kemper O, Resch K, Holtmann H (1993) Selective up-regulation of the 75-kDa tumor necrosis factor (TNF) receptor and its mRNA by TNF and IL-1. J Immunol 150:4346–4353 PubMedCAS Google Scholar
Bradley JR, Johnson DR, Pober JS (1993) Endothelial activation by hydrogen peroxide. Selective increases of intercellular adhesion molecule-1 and major histocompatibility complex class I. Am J Pathol 142:1598–1609 PubMedCAS Google Scholar
Madge LA, Sierra-Honigmann MR, Pober JS (1999) Apoptosis-inducing agents cause rapid shedding of tumor necrosis factor receptor 1 (TNFR1). A nonpharmacological explanation for inhibition of TNF-mediated activation. J Biol Chem 274:13643–13649 PubMedCAS Google Scholar
Hino T, Nakamura H, Abe S, Saito H, Inage M, Terashita K, Kato S, Tomoike H (1999) Hydrogen peroxide enhances shedding of type I soluble tumor necrosis factor receptor from pulmonary epithelial cells. Am J Respir Cell Mol Biol 20:122–128 PubMedCAS Google Scholar
Luo D, Luo Y, He Y, Zhang H, Zhang R, Li X, Dobrucki WL, Sinusas AJ, Sessa WC, Min W (2006) Differential functions of tumor necrosis factor receptor 1 and 2 signaling in ischemia-mediated arteriogenesis and angiogenesis. Am J Pathol 169:1886–1898 PubMedCAS Google Scholar
Zhang J, Hawari FI, Shamburek RD, Adamik B, Kaler M, Islam A, Liao DW, Rouhani FN, Ingham M, Levine SJ (2008) Circulating TNFR1 exosome-like vesicles partition with the LDL fraction of human plasma. Biochem Biophys Res Commun 366:579–584 PubMedCAS Google Scholar
Ozsoy HZ, Sivasubramanian N, Wieder ED, Pedersen S, Mann DL (2008) Oxidative stress promotes ligand-independent and enhanced ligand-dependent tumor necrosis factor receptor signaling. J Biol Chem 283:23419–23428 PubMedCAS Google Scholar
Micheau O, Tschopp J (2003) Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell 114:181–190 PubMedCAS Google Scholar
Varfolomeev E, Vucic D (2008) (Un)expected roles of c-IAPs in apoptotic and NFκB signaling pathways. Cell Cycle 7:1511–1521 PubMedCAS Google Scholar
Bradley JR (2008) TNF-mediated inflammatory disease. J Pathol 214:149–160 PubMedCAS Google Scholar
Bryant D, Becker L, Richardson J, Shelton J, Franco F, Peshock R, Thompson M, Giroir B (1998) Cardiac failure in transgenic mice with myocardial expression of tumor necrosis factor-α. Circulation 97:1375–1381 PubMedCAS Google Scholar
May MJ, D’Acquisto F, Madge LA, Glockner J, Pober JS, Ghosh S (2000) Selective inhibition of NF-κB activation by a peptide that blocks the interaction of NEMO with the IκB kinase complex. Science 289:1550–1554 PubMedCAS Google Scholar
Broglie P, Matsumoto K, Akira S, Brautigan DL, Ninomiya-Tsuji J (2010) Transforming growth factor β-activated kinase 1 (TAK1) kinase adaptor, TAK1-binding protein 2, plays dual roles in TAK1 signaling by recruiting both an activator and an inhibitor of TAK1 kinase in tumor necrosis factor signaling pathway. J Biol Chem 285:2333–2339 PubMedCAS Google Scholar
Scheidereit C (2006) IκB kinase complexes: gateways to NF-κB activation and transcription. Oncogene 25:6685–6705 PubMedCAS Google Scholar
Kratsios P, Huth M, Temmerman L, Salimova E, Al BM, Sgoifo A, Manghi M, Suzuki K, Rosenthal N, Mourkioti F (2010) Antioxidant amelioration of dilated cardiomyopathy caused by conditional deletion of NEMO/IKKgamma in cardiomyocytes. Circ Res 106:133–144 PubMedCAS Google Scholar
Gertzberg N, Neumann P, Rizzo V, Johnson A (2004) NAD(P)H oxidase mediates the endothelial barrier dysfunction induced by TNF-α. Am J Physiol Lung Cell Mol Physiol 286:L37–L48 PubMedCAS Google Scholar
Hailemariam TK, Huan C, Liu J, Li Z, Roman C, Kalbfeisch M, Bui HH, Peake DA, Kuo MS, Cao G, Wadgaonkar R, Jiang XC (2008) Sphingomyelin synthase 2 deficiency attenuates NFκB activation. Arterioscler Thromb Vasc Biol 28:1519–1526 PubMedCAS Google Scholar
Madge LA, Pober JS (2000) A phosphatidylinositol 3-kinase/Akt pathway, activated by tumor necrosis factor or interleukin-1, inhibits apoptosis but does not activate NFκB in human endothelial cells. J Biol Chem 275:15458–15465 PubMedCAS Google Scholar
Madge LA, Pober JS (2001) TNF signaling in vascular endothelial cells. Exp Mol Pathol 70:317–325 PubMedCAS Google Scholar
Gaur U, Aggarwal BB (2003) Regulation of proliferation, survival and apoptosis by members of the TNF superfamily. Biochem Pharmacol 66:1403–1408 PubMedCAS Google Scholar
Csiszar A, Smith KE, Koller A, Kaley G, Edwards JG, Ungvari Z (2005) Regulation of bone morphogenetic protein-2 expression in endothelial cells: role of nuclear factor-κB activation by tumor necrosis factor-α, H2O2, and high intravascular pressure. Circulation 111:2364–2372 PubMedCAS Google Scholar
Michel MC, Li Y, Heusch G (2001) Mitogen-activated protein kinases in the heart. Naunyn-Schmiedeberg’s Arch Pharmacol 363:245–266 CAS Google Scholar
Rothe M, Pan MG, Henzel WJ, Ayres TM, Goeddel DV (1995) The TNFR2-TRAF signaling complex contains two novel proteins related to baculoviral inhibitor of apoptosis proteins. Cell 83:1243–1252 PubMedCAS Google Scholar
Pan S, An P, Zhang R, He X, Yin G, Min W (2002) Etk/Bmx as a tumor necrosis factor receptor type 2-specific kinase: role in endothelial cell migration and angiogenesis. Mol Cell Biol 22:7512–7523 PubMedCAS Google Scholar
Al-Lamki RS, Brookes AP, Wang J, Reid MJ, Parameshwar J, Goddard MJ, Tellides G, Wan T, Min W, Pober JS, Bradley JR (2009) TNF receptors differentially signal and are differentially expressed and regulated in the human heart. Am J Transplant 9:2679–2696 PubMedCAS Google Scholar
Al-Lamki RS, Wang J, Vandenabeele P, Bradley JA, Thiru S, Luo D, Min W, Pober JS, Bradley JR (2005) TNFR1- and TNFR2-mediated signaling pathways in human kidney are cell type-specific and differentially contribute to renal injury. FASEB J 19:1637–1645 PubMedCAS Google Scholar
Jupp OJ, Vandenabeele P, MacEwan DJ (2003) Distinct regulation of cytosolic phospholipase A2 phosphorylation, translocation, proteolysis and activation by tumour necrosis factor-receptor subtypes. Biochem J 374:453–461 PubMedCAS Google Scholar
Defer N, Azroyan A, Pecker F, Pavoine C (2007) TNFR1 and TNFR2 signaling interplay in cardiac myocytes. J Biol Chem 282:35564–35573 PubMedCAS Google Scholar
Chu SC, Marks-Konczalik J, Wu HP, Banks TC, Moss J (1998) Analysis of the cytokine-stimulated human inducible nitric oxide synthase (iNOS) gene: characterization of differences between human and mouse iNOS promoters. Biochem Biophys Res Commun 248:871–878 PubMedCAS Google Scholar
Funakoshi H, Kubota T, Machida Y, Kawamura N, Feldman AM, Tsutsui H, Shimokawa H, Takeshita A (2002) Involvement of inducible nitric oxide synthase in cardiac dysfunction with tumor necrosis factor-α. Am J Physiol Heart Circ Physiol 282:H2159–H2166 PubMedCAS Google Scholar
Sanders DB, Larson DF, Hunter K, Gorman M, Yang B (2001) Comparison of tumor necrosis factor-alpha effect on the expression of iNOS in macrophage and cardiac myocytes. Perfusion 16:67–74 PubMedCAS Google Scholar
Kinugawa K, Shimizu T, Yao A, Kohmoto O, Serizawa T, Takahashi T (1997) Transcriptional regulation of inducible nitric oxide synthase in cultured neonatal rat cardiac myocytes. Circ Res 81:911–921 PubMedCAS Google Scholar
Vasquez-Vivar J, Whitsett J, Ionova I, Konorev E, Zielonka J, Kalyanaraman B, Shi Y, Pieper GM (2008) Cytokines and lipopolysaccharides induce inducible nitric oxide synthase but not enzyme activity in adult rat cardiomyocytes. Free Radic Biol Med 45:994–1001 PubMedCAS Google Scholar
Paz Y, Frolkis I, Pevni D, Shapira I, Yuhas Y, Iaina A, Wollman Y, Chernichovski T, Nesher N, Locker C, Mohr R, Uretzky G (2003) Effect of tumor necrosis factor-alpha on endothelial and inducible nitric oxide synthase messenger ribonucleic acid expression and nitric oxide synthesis in ischemic and nonischemic isolated rat heart. J Am Coll Cardiol 42:1299–1305 PubMedCAS Google Scholar
Csont T, Viappiani S, Sawicka J, Slee S, Altarejos JY, Batinic-Haberle I, Schulz R (2005) The involvement of superoxide and iNOS-derived NO in cardiac dysfunction induced by pro-inflammatory cytokines. J Mol Cell Cardiol 39:833–840 PubMedCAS Google Scholar
Jain M, Jakubowski A, Cui L, Shi J, Su L, Bauer M, Guan J, Lim CC, Naito Y, Thompson JS, Sam F, Ambrose C, Parr M, Crowell T, Lincecum JM, Wang MZ, Hsu YM, Zheng TS, Michaelson JS, Liao R, Burkly LC (2009) A novel role for tumor necrosis factor-like weak inducer of apoptosis (TWEAK) in the development of cardiac dysfunction and failure. Circulation 119:2058–2068 PubMedCAS Google Scholar
Chorianopoulos E, Heger T, Lutz M, Frank D, Bea F, Katus HA, Frey N (2009) FGF-inducible 14-kDa protein (Fn14) is regulated via the RhoA/ROCK kinase pathway in cardiomyocytes and mediates nuclear factor-kappaB activation by TWEAK. Basic Res Cardiol 105:301–313 PubMed Google Scholar
Arras M, Höche A, Bohle R, Eckert P, Riedel W, Schaper J (1996) Tumor necrosis factor-α in macrophages of heart, liver, kidney, and in the pituitary gland. Cell Tissue Res 285:39–49 PubMedCAS Google Scholar
Frangogiannis NG, Lindsey ML, Michael LH, Youker KA, Bressler RB, Mendoza LH, Spengler RN, Smith CW, Entman ML (1998) Resident cardiac mast cells degranulate and release preformed TNF-α, initiating the cytokine cascade in experimental canine myocardial ischemia/reperfusion. Circulation 98:699–710 PubMedCAS Google Scholar
Marino MW, Dunn A, Grail D, Inglese M, Noguchi Y, Richards E, Jungbluth A, Wada H, Moore M, Williamson B, Basu S, Old LJ (1997) Characterization of tumor necrosis factor-deficient mice. Proc Natl Acad Sci USA 94:8093–8098 PubMedCAS Google Scholar
Kurrelmeyer KM, Michael LH, Baumgarten G, Taffet GE, Peschon JJ, Sivasubramanian N, Entman ML, Mann DL (2000) Endogenous tumor necrosis factor protects the adult cardiac myocyte against ischemic-induced apoptosis in a murine model of acute myocardial infarction. PNAS 97:5456–5461 PubMedCAS Google Scholar
Sivasubramanian N, Coker ML, Kurrelmeyer KM, MacLellan WR, DeMayo FJ, Spinale FG, Mann DL (2001) Left ventricular remodeling in transgenic mice with cardiac restricted overexpression of tumor necrosis factor. Circulation 104:826–831 PubMedCAS Google Scholar
Kapadia S, Lee J, Torre-Amione G, Birdsall HH, Ma TS, Mann DL (1995) Tumor necrosis factor-α gene and protein expression in adult feline myocardium after endotoxin administration. J Clin Invest 96:1042–1052 PubMedCAS Google Scholar
Oral H, Dorn GW, Mann DL (1997) Sphingosine mediates the immediate negative inotropic effects of tumor necrosis factor-α in the adult mammalian cardiac myocyte. J Biol Chem 272:4836–4842 PubMedCAS Google Scholar
Sugishita K, Kinugawa K, Shimizu T, Harada K, Matsui H, Takahashi T, Serizawa T, Kohmoto O (1999) Cellular basis for the acute inhibitory effects of IL-6 and TNF-α on excitation-contraction coupling. J Mol Cell Cardiol 31:1457–1467 PubMedCAS Google Scholar
Bozkurt B, Kribbs SB, Clubb FJ, Michael LH, Didenke VV, Hornsby PJ, Seta Y, Oral H, Spinale FG, Mann DL (1998) Pathophysiologically relevant concentrations of tumor necrosis factor-α promote progressive left ventricular dysfunction and remodeling in rats. Circulation 97:1382–1391 PubMedCAS Google Scholar
Grandel U, Fink L, Blum A, Heep M, Buerke M, Kraemer H-J, Mayer K, Bohle RM, Seeger W, Grimminger F, Sibelius U (2000) Endotoxin-induced myocardial tumor necrosis factor-α synthesis depresses contractility of isolated rat hearts. Evidence for a role of sphingosine and cyclooxygenase-2-derived thromboxane production. Circulation 102:2758–2764 PubMedCAS Google Scholar
Murray DR, Freeman GL (1996) Tumor necrosis factor-α induces a biphasic effect on myocardial contractility in conscious dogs. Circ Res 78:154–160 PubMedCAS Google Scholar
Yokoyama T, Vaca L, Durante W, Hazarika P, Mann DL (1993) Cellular basis for the negative inotropic effects of tumor necrosis factor-α in the adult mammalian heart. J Clin Invest 92:2303–2312 PubMedCAS Google Scholar
Arras M, Strasser R, Mohri M, Doll R, Eckert P, Schaper W, Schaper J (1998) Tumor necrosis factor-alpha is expressed by monocytes/macrophages following cardiac microembolization and is antagonized by cyclosporine. Basic Res Cardiol 93:97–107 PubMedCAS Google Scholar
Heusch G, Kleinbongard P, Boese D, Levkau B, Haude M, Schulz R, Erbel R (2009) Coronary microembolization: from bedside to bench and back to bedside. Circulation 120:1822–1836 PubMed Google Scholar
Li S, Zhong S, Zeng K, Luo Y, Zhang F, Sun X, Chen L (2009) Blockade of NF-kappaB by pyrrolidine dithiocarbamate attenuates myocardial inflammatory response and ventricular dysfunction following coronary microembolization induced by homologous microthrombi in rats. Basic Res Cardiol 105:139–150 Google Scholar
Heusch G, Schulz R, Rahimtoola SH (2005) Myocardial hibernation: a delicate balance. Am J Physiol Heart Circ Physiol 288:H984–H999 PubMedCAS Google Scholar
Perry DK, Hannun YA (1998) The role of ceramide in cell signaling. Biochim Biophys Acta 1436:233–243 PubMedCAS Google Scholar
Hannun YA (1994) The sphingomyelin cycle and the second messenger function of ceramide. J Biol Chem 269:3125–3128 PubMedCAS Google Scholar
Friedrichs GS, Swillo RE, Low B, Bridal T, Numann R, Warner LM, Killar LM, Sidek K (2002) Sphingosine modulates myocyte electrophysiology, induces negative inotropy, and decreases survival after myocardial ischemia. J Cardiovasc Pharmacol 39:18–28 PubMedCAS Google Scholar
Skyschally A, Gres P, van Caster P, Van de SA, Boengler K, Schulz R, Heusch G (2008) Reduced calcium responsiveness characterizes contractile dysfunction following coronary microembolization. Basic Res Cardiol 103:552–559 PubMed Google Scholar
Kao YH, Chen YC, Cheng CC, Lee TI, Chen YJ, Chen SA (2010) Tumor necrosis factor-alpha decreases sarcoplasmic reticulum Ca2+-ATPase expressions via the promoter methylation in cardiomyocytes. Crit Care Med 38:217–222 PubMedCAS Google Scholar
Kumar A, Paladugu B, Mensing J, Kumar A, Parrillo JE (2007) Nitric oxide-dependent and -independent mechanisms are involved in TNF-α-induced depression of cardiac myocyte contractility. Am J Physiol Regul Integr Comp Physiol 292:R1900–R1906 PubMedCAS Google Scholar
Leineweber K, Böhm M, Heusch G (2006) Cyclic adenosine monophosphate in acute myocardial infarction with heart failure. Slayer or savior ? Circulation 114:365–367 PubMed Google Scholar
Ferdinandy P, Danial H, Ambrus I, Rothery RA, Schulz R (2000) Peroxynitrite is a major contributor to cytokine-induced myocardial contractile failure. Circ Res 87:241–247 PubMedCAS Google Scholar
Lancaster JR Jr, Laster SM, Gooding LR (1989) Inhibition of target cell mitochondrial electron transfer by tumor necrosis factor. FEBS Lett 248:169–174 PubMedCAS Google Scholar
Busquets S, Aranda X, Ribas-Carbo M, Azcon-Bieto J, Lopez-Soriano FJ, Argiles JM (2003) Tumour necrosis factor-alpha uncouples respiration in isolated rat mitochondria. Cytokine 22:1–4 PubMedCAS Google Scholar
Mariappan N, Elks CM, Fink B, Francis J (2009) TNF-induced mitochondrial damage: a link between mitochondrial complex I activity and left ventricular dysfunction. Free Radic Biol Med 46:462–470 PubMedCAS Google Scholar
Suematsu N, Tsutsui H, Wen J, Kang D, Ikeuchi M, Ide T, Hayashidani S, Shiomi T, Kubota T, Hamasaki N, Takeshita A (2003) Oxidative stress mediates tumor necrosis factor-α-induced mitochondrial DNA damage and dysfunction in cardiac myocytes. Circulation 107:1418–1423 PubMedCAS Google Scholar
Canton M, Skyschally A, Menabo R, Boengler K, Gres P, Schulz R, Haude M, Erbel R, Di Lisa F, Heusch G (2006) Oxidative modification of tropomyosin and myocardial dysfunction following coronary microembolization. Eur Heart J 27:875–881 PubMedCAS Google Scholar
Schulz R, Nava E, Moncada S (1992) Induction and potential biological relevance of a Ca2+—independent nitric oxide synthase in the myocardium. Br J Pharmacol 105:575–580 PubMedCAS Google Scholar
Heinzel FR, Gres P, Boengler K, Duschin A, Konietzka I, Rassaf T, Snedovskaya J, Meyer S, Skyschally A, Kelm M, Heusch G, Schulz R (2008) Inducible nitric oxide synthase expression and cardiomyocyte dysfunction during sustained moderate ischemia in pigs. Circ Res 103:1120–1127 PubMedCAS Google Scholar
Rozanski GJ, Witt RC (1994) IL-1 inhibits beta-adrenergic control of cardiac calcium current: role of L-arginine/nitric oxide pathway. Am J Physiol 267:H1753–H1758 PubMedCAS Google Scholar
Shoji H, Takahashi S, Okabe E (1999) Intracellular effects of nitric oxide on force production and Ca2+ sensitivity of cardiac myofilaments. Antioxid Redox Signal 1:509–521 PubMedCAS Google Scholar
Prabhu SD (2004) Cytokine-induced modulation of cardiac function. Circ Res 95:1140–1153 PubMedCAS Google Scholar
Ramirez-Correa GA, Cortassa S, Stanley B, Gao WD, Murphy AM (2010) Calcium sensitivity, force frequency relationship and cardiac troponin I: critical role of PKA and PKC phosphorylation sites. J Mol Cell Cardiol 48:943–953 PubMedCAS Google Scholar
Belosjorow S, Bolle I, Duschin A, Heusch G, Schulz R (2003) TNFα antibodies are as effective as ischemic preconditioning in reducing infarct size in rabbits. Am J Physiol Heart Circ Physiol 284:H927–H930 PubMedCAS Google Scholar
Gu Q, Yang XP, Bonde P, DiPaula A, Fox-Talbot K, Becker LC (2006) Inhibition of TNF-α reduces myocardial injury and proinflammatory pathways following ischemia-reperfusion in the dog. J Cardiovasc Pharmacol 48:320–328 PubMedCAS Google Scholar
Sugano M, Tsuchida K, Hata T, Makino N (2004) In vivo transfer of soluble TNF-alpha receptor 1 gene improves cardiac function and reduces infarct size after myocardial infarction in rats. FASEB J 18:911–913 PubMedCAS Google Scholar
Maekawa N, Wada H, Kanda T, Niwa T, Yamada Y, Saito K, Fujiwara H, Sekikawa K, Seishima M (2002) Improved myocardial ischemia/reperfusion injury in mice lacking tumor necrosis factor-α. J Am Coll Cardiol 39:1229–1235 PubMedCAS Google Scholar
Labruto F, Yang J, Vaage J, Valen G (2005) Role of tumor necrosis factor alpha and its receptor I in preconditioning by hyperoxia. Basic Res Cardiol 100:198–207 PubMedCAS Google Scholar
Dawn B, Guo Y, Rezazadeh A, Wang O-L, Stein AB, Hunt G, Varma J, Xuan Y-T, Wu W-J, Tan W, Zhu X, Bolli R (2004) Tumor necrosis factor-α does not modulate ischemia/reperfusion injury in naive myocardium but is essential for the development of late preconditioning. J Mol Cell Cardiol 37:51–61 PubMedCAS Google Scholar
Flaherty MP, Guo Y, Tiwari S, Rezazadeh A, Hunt G, Sanganalmath SK, Tang XL, Bolli R, Dawn B (2008) The role of TNF-α receptors p55 and p75 in acute myocardial ischemia/reperfusion injury and late preconditioning. J Mol Cell Cardiol 45:735–741 PubMedCAS Google Scholar
Sun M, Dawood F, Wen W-H, Chen M, Dixon I, Kirshenbaum LA (2004) Excessive tumor necrosis factor activation after infarction contributes to susceptibility of myocardial rupture and left ventricular dysfunction. Circulation 110:3221–3228 PubMedCAS Google Scholar
Ramani R, Mathier M, Wang P, Gibson G, Tögel S, Dawson J, Bauer A, Alber S, Watkins SC, McTiernan CF, Feldman AM (2004) Inhibition of tumor necrosis factor receptor-1-mediated pathways has beneficial effects in a murine model of postischemic remodeling. Am J Physiol Heart Circ Physiol 287:H1369–H1377 PubMedCAS Google Scholar
Monden Y, Kubota T, Inoue T, Tsutsumi T, Kawano S, Ide T, Tsutsui H, Sunagawa K (2007) Tumor necrosis factor-α is toxic via receptor 1 and protective via receptor 2 in a murine model of myocardial infarction. Am J Physiol Heart Circ Physiol 293:H743–H753 PubMedCAS Google Scholar
Kosmala W, Derzhko R, Przewlocka-Kosmala M, Orda A, Mazurek W (2008) Plasma levels of TNF-alpha, IL-6, and IL-10 and their relationship with left ventricular diastolic function in patients with stable angina pectoris and preserved left ventricular systolic performance. Coron Artery Dis 19:375–382 PubMed Google Scholar
Gurantz D, Cowling RT, Greenberg BH, Frikovsky E, Moore CD (2005) IL-1ß and TNF-α upregulate angiotensin II type 1 (AT1) receptors on cardiac fibroblasts and are associated with increased AT1 density in the post-MI heart. J Mol Cell Cardiol 38:505–515 PubMedCAS Google Scholar
Herskowitz A, Choi S, Ansari AA, Wesselingh S (1995) Cytokine mRNA expression in postischemic/reperfused myocardium. Am J Pathol 146:419–428 PubMedCAS Google Scholar
Berthonneche C, Sulpice T, Boucher F, Gourand L, De Leiris J, O’Connor SE, Herbert J-M, Janiak P (2004) New insights into the pathological role of TNF-α in early cardiac dysfunction and subsequent heart failure after infarction in rats. Am J Physiol Heart Circ Physiol 287:H340–H350 PubMedCAS Google Scholar
Higuchi Y, McTiernan CF, Frye CB, McGowan BS, Chan TO, Feldman AM (2004) Tumor necrosis factor receptors 1 and 2 differentially regulate survival, cardiac dysfunction, and remodeling in transgenic mice with tumor necrosis factor-α-induced cardiomyopathy. Circulation 109:1892–1897 PubMedCAS Google Scholar
Hayashidani S, Tsutsui H, Ikeuchi M, Shiomi T, Matsusaka H, Kubota T, Imanaka-Yoshida K, Itoh T, Takeshita A (2003) Targeted deletion of MMP-2 attenuates early LV rupture and late remodeling after experimental myocardial infarction. Am J Physiol Heart Circ Physiol 285:H1229–H1235 PubMedCAS Google Scholar
Venkatachalam K, Venkatesan B, Valente AJ, Melby PC, Nandish S, Reusch JE, Clark RA, Chandrasekar B (2009) WISP1, a pro-mitogenic, pro-survival factor, mediates tumor necrosis factor-α (TNF-α)-stimulated cardiac fibroblast proliferation but inhibits TNF-α-induced cardiomyocyte death. J Biol Chem 284:14414–14427 PubMedCAS Google Scholar
Schulz R, Heusch G (2009) Tumor necrosis factor-alpha and its receptors 1 and 2: Yin and Yang in myocardial infarction? Circulation 119:1355–1357 PubMed Google Scholar
Murry CE, Jennings RB, Reimer KA (1986) Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 74:1124–1136 PubMedCAS Google Scholar
Marber MS, Latchman DS, Walker JM, Yellon DM (1993) Cardiac stress protein elevation 24 hours after brief ischemia or heat stress is associated with resistance to myocardial infarction. Circulation 88:1264–1272 PubMedCAS Google Scholar
Heusch G, Schulz R (1997) Endogenous protective mechanisms in myocardial ischemia: hibernation and ischemic preconditioning. Am J Cardiol 80(Sp.Iss.3A):26A–33A PubMedCAS Google Scholar
Schulz R, Cohen MV, Behrends M, Downey JM, Heusch G (2001) Signal transduction of ischemic preconditioning. Cardiovasc Res 52:181–198 PubMedCAS Google Scholar
Schulz R, Gres P, Konietzka I, Heusch G (2005) Regional differences of myocardial infarct development and ischemic preconditioning. Basic Res Cardiol 100:48–56 PubMed Google Scholar
Ovize M, Baxter GF, Di LF, Ferdinandy P, Garcia-Dorado D, Hausenloy DJ, Heusch G, Vinten-Johansen J, Yellon DM, Schulz R (2010) Postconditioning and protection from reperfusion injury: where do we stand? Cardiovasc Res doi: 10.1093/cvr/cvq129
Zhao Z-Q, Corvera JS, Halkos ME, Kerendi F, Wang N-P, Guyton RA, Vinten-Johansen J (2003) Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning. Am J Physiol Heart Circ Physiol 285:H579–H588 PubMedCAS Google Scholar
Heusch G (2004) Postconditioning. Old wine in a new bottle? J Am Coll Cardiol 44:1111–1112 PubMed Google Scholar
Skyschally A, van Caster P, Boengler K, Gres P, Musiolik J, Schilawa D, Schulz R, Heusch G (2009) Ischemic postconditioning in pigs: no causal role for RISK activation. Circ Res 104:15–18 PubMedCAS Google Scholar
Huffmyer J, Raphael J (2009) Physiology and pharmacology of myocardial preconditioning and postconditioning. Semin Cardiothorac Vasc Anesth 13:5–18 PubMed Google Scholar
Kimura H, Shintani-Ishida K, Nakajima M, Liu S, Matsumoto K, Yoshida K (2006) Ischemic preconditioning or p38 MAP kinase inhibition attenuates myocardial TNF α production and mitochondria damage in brief myocardial ischemia. Life Sci 78:1901–1910 PubMedCAS Google Scholar
Meldrum DR, Dinarello CA, Shames BD, Cleveland Jr. JC, Cain BS, Banerjee A, Meng X, Harken AH (1998) Ischemic preconditioning decreases postischemic myocardial tumor necrosis factor-α production. Potential ultimate effector mechanism of preconditioning. Circulation 98 suppl:II-214–II-219
Belosjorow S, Schulz R, Dörge H, Schade FU, Heusch G (1999) Endotoxin and ischemic preconditioning: TNF-α concentration and myocardial infarct development in rabbits. Am J Physiol Heart Circ Physiol 277:H2470–H2475 CAS Google Scholar
Smith RM, Suleman N, McCarthy J, Sack MN (2002) Classic ischemic but not pharmacologic preconditioning is abrogated following genetic ablation of the TNFα gene. Cardiovasc Res 55:553–560 PubMedCAS Google Scholar
Lecour S, Rochette L, Opie L (2005) Free radicals trigger TNFα-induced cardioprotection. Cardiovasc Res 65:239–243 PubMedCAS Google Scholar
Lecour S, Smith RM, Woodward B, Opie LH, Rochette L, Sack MN (2002) Identification of a novel role for sphingolipid signaling in TNFα and ischemic preconditioning mediated cardioprotection. J Mol Cell Cardiol 34:509–518 PubMedCAS Google Scholar
Ichikawa Y, Miura T, Nakano A, Miki T, Nakamura Y, Tsuchihashi K, Shimamoto K (2004) The role of ADAM protease in the tyrosine kinase-mediated trigger mechanism of ischemic preconditioning. Cardiovasc Res 62:167–175 PubMedCAS Google Scholar
Ren X, Wang Y, Jones WK (2004) TNF-α is required for late ischemic preconditioning but not for remote preconditioning of trauma. J Surg Res 121:120–129 PubMedCAS Google Scholar
Heusch G, Boengler K, Schulz R (2008) Cardioprotection: nitric oxide, protein kinases, and mitochondria. Circulation 118:1915–1919 PubMed Google Scholar
Kin H, Wang NP, Mykytenko J, Reeves J, Deneve J, Jiang R, Zatta AJ, Guyton RA, Vinten-Johansen J, Zhao ZQ (2008) Inhibition of myocardial apoptosis by postconditioning is associated with attenuation of oxidative stress-mediated nuclear factor-κ B translocation and TNF α release. Shock 29:761–768 PubMedCAS Google Scholar
Lacerda L, Somers S, Opie HL, Lecour S (2009) Ischemic postconditioning protects against reperfusion injury via the SAFE pathway. Cardiovasc Res 84:201–208 PubMedCAS Google Scholar
Heinzel FR, Luo Y, Li X, Boengler K, Buechert A, García-Dorado D, Di Lisa F, Schulz R, Heusch G (2005) Impairment of diazoxide-induced formation of reactive oxygen species and loss of cardioprotection in connexin 43 deficient mice. Circ Res 97:583–586 PubMedCAS Google Scholar
Ferdinandy P, Schulz R, Baxter GF (2007) Interaction of cardiovascular risk factors with myocardial ischemia/reperfusion injury, preconditioning, and postconditioning. Pharmacol Rev 59:418–458 PubMedCAS Google Scholar
Tanno M, Gorog DA, Bellahcene M, Cao X, Quinlan RA, Marber MS (2003) Tumor necrosis factor-induced protection of the murine heart is independent of p38-MAPK activation. J Mol Cell Cardiol 35:1523–1527 PubMedCAS Google Scholar
Boengler K, Hilfiker-Kleiner D, Drexler H, Heusch G, Schulz R (2008) The myocardial JAK/STAT pathway: from protection to failure. Pharmacol Ther 120:172–185 PubMedCAS Google Scholar
Fischer P, Hilfiker-Kleiner D (2007) Survival pathways in hypertrophy and heart failure: the gp130-STAT3 axis. Basic Res Cardiol 102:393–411 PubMedCAS Google Scholar
Kelly R, King J, Lecour S (2008) Sphingosine-1-phosphate induced cardioprotection is mediated by STAT-3. J Mol Cell Cardiol 44:740 Google Scholar
Suleman N, Somers S, Smith R, Opie LH, Lecour SC (2008) Dual activation of STAT-3 and Akt is required during the trigger phase of ischaemic preconditioning. Cardiovasc Res 79:127–133 PubMedCAS Google Scholar
Lecour S (2009) Activation of the protective survivor activating factore enhancement (SAFE) pathway against reperfusion injury: does it go beyond the RISK path? J Mol Cell Cardiol 47:32–40 PubMedCAS Google Scholar
Boengler K, Buechert A, Heinen Y, Roeskes C, Hilfiker-Kleiner D, Heusch G, Schulz R (2008) Cardioprotection by ischemic postconditioning is lost in aged and STAT3-deficient mice. Circ Res 102:131–135 PubMedCAS Google Scholar
Goodman MD, Koch SE, Fuller-Bicer GA, Butler KL (2008) Regulating RISK: a role for JAK-STAT signaling in postconditioning? Am J Physiol Heart Circ Physiol 295:H1649–H1656 PubMedCAS Google Scholar
Lecour S, Suleman N, Deuchar GA, Somers S, Lacerda L, Huisamen B, Opie LH (2005) Pharmacological preconditioning with tumor necrosis factor-α activates signal transducer and activator of transcription-3 at reperfusion without involving classic prosurvival kinases (Akt and extracellular signal-regulated kinase). Circulation 112:3911–3918 PubMedCAS Google Scholar
Frias MA, James RW, Gerber-Wicht C, Lang U (2009) Native and reconstituted HDL activate Stat3 in ventricular cardiomyocytes via ERK1/2: role of sphingosine-1-phosphate. Cardiovasc Res 82:313–323 PubMedCAS Google Scholar
Gao Q, Zhang SZ, Cao CM, Bruce IC, Xia Q (2005) The mitochondrial permeability transition pore and the Ca2+-activated K+ channel contribute to the cardioprotection conferred by tumor necrosis factor-α. Cytokine 32:199–205 PubMedCAS Google Scholar
Heusch G, Boengler K, Schulz R (2010) Inhibition of mitochondrial permeability transition pore opening: the holy grail of cardioprotection. Basic Res Cardiol 105:151–154 PubMed Google Scholar
Burchfield JS, Dong JW, Sakata Y, Gao F, Tzeng HP, Topkara VK, Entman ML, Sivasubramanian N, Mann DL (2010) The cytoprotective effects of tumor necrosis factor are conveyed through tumor necrosis factor receptor associated factor 2 in the heart. Circ Heart Fail 3:157–164 PubMedCAS Google Scholar
Hattori R, Maulik N, Otani H, Zhu L, Cordis G, Engelman RM, Siddiqui MAQ, Das DK (2001) Role of STAT3 in ischemic preconditioning. J Mol Cell Cardiol 33:1929–1936 PubMedCAS Google Scholar
Brown JM, Anderson BO, Repine JE, Shanley PF, White CW, Grosso MA, Banerjee A, Bensard DD, Harken AH (1992) Neutrophils contribute to TNF induced myocardial tolerance to ischaemia. J Mol Cell Cardiol 24:485–495 PubMedCAS Google Scholar
Satoh M, Minami Y, Takahashi Y, Nakamura M (2008) Immune modulation: role of the inflammatory cytokine cascade in the failing human heart. Curr Heart Fail Rep 5:69–74 PubMedCAS Google Scholar
Gulick T, Chung MK, Pieper SJ, Lange LG, Schreiner GF (1989) Interleukin 1 and tumor necrosis factor inhibit myocyte β-adrenergic responsiveness. Proc Natl Acad Sci USA 86:6753–6757 PubMedCAS Google Scholar
Moe GW, Marin-Garcia J, Konig A, Goldenthal M, Lu X, Feng Q (2004) In vivo TNF-α inhibition ameliorates cardiac mitochondrial dysfunction, oxidative stress, and apoptosis in experimental heart failure. Am J Physiol Heart Circ Physiol 287:H1813–H1820 PubMedCAS Google Scholar
Kumar A, Thota V, Dee L, Olson J, Uretz E, Parrillo JE (1996) Tumor necrosis factor α and interleukin 1β are responsible for in vitro myocardial cell depression induced by human septic shock serum. J Exp Med 183:949–958 PubMedCAS Google Scholar
Meldrum DR (1998) Tumor necrosis factor in the heart. Am J Physiol Regul Integr Comp Physiol 274:R577–R595 CAS Google Scholar
Patten M, Krämer E, Bünemann J, Wenck C, Thoenes M, Wieland T, Long C (2001) Endotoxin and cytokines alter contractile protein expression in cardiac myocytes in vivo. Pflügers Arch Eur J Physiol 442:920–927 CAS Google Scholar
Dibbs ZI, Diwan A, Nemoto S, DeFreitas G, Abdellatif M, Carabello BA, Spinale FG, Feuerstein G, Sivasubramanian N, Mann DL (2003) Targeted overexpression of transmembrane tumor necrosis factor provokes a concentric cardiac hypertrophic phenotype. Circulation 108:1002–1008 PubMedCAS Google Scholar
Diwan A, Dibbs Z, Nemoto S, DeFreitas G, Carabello BA, Sivasubramanian N, Wilson EM, Spinale FG, Mann DL (2004) Targeted overexpression of noncleavable and secreted forms of tumor necrosis factor provokes disparate cardiac phenotypes. Circulation 109:262–268 PubMedCAS Google Scholar
Higuchi Y, Otsu K, Nishida K, Hirotani S, Nakayama H, Yamaguchi O, Matsumura Y, Ueno H, Tada M, Hori M (2002) Involvement of reactive oxygen species-mediated NF-κB activation in TNF-α-induced cardiomyocyte hypertrophy. J Mol Cell Cardiol 34:233–240 PubMedCAS Google Scholar
Yokoyama T, Nakano M, Bednarczyk JL, McIntyre BW, Entman M, Mann DL (1997) Tumor necrosis factor-α provokes a hypertrophic growth response in adult cardiac myocytes. Circulation 95:1247–1252 PubMedCAS Google Scholar
Kubota T, McTiernan CF, Frye CS, Slawson SE, Lemster BH, Koretsky AP, Demetris AJ, Feldman AM (1997) Dilated cardiomyopathy in transgenic mice with cardiac-specific overexpression of tumor necrosis factor-α. Circ Res 81:627–635 PubMedCAS Google Scholar
Funakoshi H, Zacharia LC, Tang Z, Zhang J, Lee LL, Good JC, Herrmann DE, Higuchi Y, Koch WJ, Jackson EK, Chan TO, Feldman AM (2007) A1 adenosine receptor upregulation accompanies decreasing myocardial adenosine levels in mice with left ventricular dysfunction. Circulation 115:2307–2315 PubMedCAS Google Scholar
Barnes PJ, Karin M (1997) Nuclear factor-kappaB: a pivotal transcription factor in chronic inflammatory diseases. N Engl J Med 336:1066–1071 PubMedCAS Google Scholar
Nakamura K, Fushimi K, Kouchi H, Mihara K, Miyazaki M, Ohe T, Namba M (1998) Inhibitory effects of antioxidants on neonatal rat cardiac myocyte hypertrophy induced by tumor necrosis factor-α and angiotensin II. Circulation 98:794–799 PubMedCAS Google Scholar
Hirotani S, Otsu K, Nishida K, Higuchi Y, Morita T, Nakayama H, Yamaguchi O, Mano T, Matsumura Y, Ueno H, Tada M, Hori M (2002) Involvement of nuclear factor-kappaB and apoptosis signal-regulating kinase 1 in G-protein-coupled receptor agonist-induced cardiomyocyte hypertrophy. Circulation 105:509–515 PubMedCAS Google Scholar
Jobe LJ, Melendez GC, Levick SP, Du Y, Brower GL, Janicki JS (2009) TNF-α inhibition attenuates adverse myocardial remodeling in a rat model of volume overload. Am J Physiol Heart Circ Physiol 297:H1462–H1468 PubMedCAS Google Scholar
Mariappan N, Soorappan RN, Haque M, Sriramula S, Francis J (2007) TNF-α-induced mitochondrial oxidative stress and cardiac dysfunction: restoration by superoxide dismutase mimetic Tempol. Am J Physiol Heart Circ Physiol 293:H2726–H2737 PubMedCAS Google Scholar
Scorrano L, Penzo D, Petronilli V, Pagano F, Bernardi P (2001) Arachidonic acid causes cell death through the mitochondrial permeability transition. Implications for tumor necrosis factor-alpha apoptotic signaling. J Biol Chem 276:12035–12040 PubMedCAS Google Scholar
Zhu J, Liu M, Kennedy RH, Liu SJ (2006) TNF-alpha-induced impairment of mitochondrial integrity and apoptosis mediated by caspase-8 in adult ventricular myocytes. Cytokine 34:96–105 PubMedCAS Google Scholar
Zhu LP, Yu XD, Ling S, Brown RA, Kuo TH (2000) Mitochondrial Ca2+ homeostasis in the regulation of apoptotic and necrotic cell deaths. Cell Calcium 28:107–117 PubMedCAS Google Scholar
Bajaj G, Sharma RK (2006) TNF-alpha-mediated cardiomyocyte apoptosis involves caspase-12 and calpain. Biochem Biophys Res Commun 345:1558–1564 PubMedCAS Google Scholar
Galvez AS, Diwan A, Odley AM, Hahn HS, Osinska H, Melendez JG, Robbins J, Lynch RA, Marreez Y, Dorn GW (2007) Cardiomyocyte degeneration with calpain deficiency reveals a critical role in protein homeostasis. Circ Res 100:1071–1078 PubMedCAS Google Scholar
Zatz M, Starling A (2005) Calpains and disease. N Engl J Med 352:2413–2423 PubMedCAS Google Scholar
Youle RJ, Strasser A (2008) The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol 9:47–59 PubMedCAS Google Scholar
Haudek SB, Taffet GE, Schneider MD, Mann DL (2007) TNF provokes cardiomyocyte apoptosis and cardiac remodeling through activation of multiple cell death pathways. J Clin Invest 117:2692–2701 PubMedCAS Google Scholar
Sharma R, Coats AJS, Anker SD (2000) The role of inflammatory mediators in chronic heart failure: cytokines, nitric oxide, and endothelin-1. Int J Cardiol 72:175–186 PubMedCAS Google Scholar
Haywood GA, Tsao PS, von der Leyen HE, Mann MJ, Keeling PJ, Trindade PT, Lewis NP, Byrne CD, Rickenbacher PR, Bishopric NH, Cooke JP, McKenna WJ, Fowler MB (1996) Expression of inducible nitric oxide synthase in human heart failure. Circulation 93:1087–1094 PubMedCAS Google Scholar
Adams V, Nehrhoff B, Spate U, Linke A, Schulze PC, Baur A, Gielen S, Hambrecht R, Schuler G (2002) Induction of iNOS expression in skeletal muscle by IL-1beta and NFkappaB activation: an in vitro and in vivo study. Cardiovasc Res 54:95–104 PubMedCAS Google Scholar
Sareila O, Korhonen R, Auvinen H, Hamalainen M, Kankaanranta H, Nissinen E, Moilanen E (2008) Effects of levo- and dextrosimendan on NF-κB-mediated transcription, iNOS expression and NO production in response to inflammatory stimuli. Br J Pharmacol 155:884–895 PubMedCAS Google Scholar
Hamid T, Gu Y, Ortines RV, Bhattacharya C, Wang G, Xuan YT, Prabhu SD (2009) Divergent tumor necrosis factor receptor-related remodeling responses in heart failure: role of nuclear factor-kappaB and inflammatory activation. Circulation 119:1386–1397 PubMedCAS Google Scholar
Kawamura N, Kubota T, Kawano S, Monden Y, Feldman AM, Tsutsui H, Takeshita A, Sunagawa K (2005) Blockade of NFκB improves cardiac function and survival without affecting inflammation in TNF-α—induced cardiomyopathy. Cardiovasc Res 66:520–529 PubMedCAS Google Scholar
Song W, Lu X, Feng Q (2000) Tumor necrosis factor-α induces apoptosis via inducible nitric oxide synthase in neonatal mouse cardiomyocytes. Cardiovasc Res 45:595–602 PubMedCAS Google Scholar
Kapadia S, Oral H, Lee J, Taffet G, Mann DL (1997) Hemodynamic regulation of tumor necrosis factor alpha-gene and protein expression in adult feline myocardium. Circulation 81:187–195 CAS Google Scholar
Awad AE, Kandalam V, Chakrabarti S, Wang X, Penninger JM, Davidge ST, Oudit GY, Kassiri Z (2010) Tumor necrosis factor induces matrix metalloproteinases in cardiomyocytes and cardiofibroblasts differentially via superoxide production in a PI3 Kγ-dependent manner. Am J Physiol Cell Physiol 298:C679–C692 PubMedCAS Google Scholar
Li YY, Feldman AM, Sun Y, McTiernan CF (1998) Differential expression of tissue inhibitors of metalloproteinases in the failing human heart. Circulation 98:1728–1734 PubMedCAS Google Scholar
Gao CQ, Sawicki G, Suarez-Pinzon WL, Csont T, Wozniak M, Ferdinandy P, Schulz R (2003) Matrix metalloproteinase-2 mediates cytokine-induced myocardial contractile dysfunction. Cardiovasc Res 57:426–433 PubMedCAS Google Scholar
Li YY, Feng Q, Kadokami T, McTiernan CF, Draviam R, Watkins SC, Feldman AM (2000) Myocardial extracellular matrix remodeling in transgenic mice overexpressing tumor necrosis factor α can be modulated by anti-tumor necrosis factor α therapy. PNAS 97:12746–12751 PubMedCAS Google Scholar
Li YY, Kadokami T, Wang P, McTiernan CF, Feldman AM (2002) MMP inhibition modulates TNF-α transgenic mouse phenotype early in the development of heart failure. Am J Physiol Heart Circ Physiol 282:H983–H989 PubMedCAS Google Scholar
Westermann D, Van Linthout S, Dhayat S, Dhayat N, Schmidt A, Noutsias M, Song XY, Spillmann F, Riad A, Schultheiss HP, Tschope C (2007) Tumor necrosis factor-alpha antagonism protects from myocardial inflammation and fibrosis in experimental diabetic cardiomyopathy. Basic Res Cardiol 102:500–507 PubMedCAS Google Scholar
Libby P, Ridker PM, Maseri A (2002) Inflammation and atherosclerosis. Circulation 105:1135–1143 PubMedCAS Google Scholar
Valgimigli M, Ceconi C, Malagutti P, Merli E, Soukhomovskaia O, Francolini G, Cicchitelli G, Olivares A, Parrinello G, Percoco G, Guardiglli G, Mele D, Pirani R, Ferrari R (2005) Tumor necrosis factor-α receptor 1 is a major predictor of mortality and new-onset heart failure in patients with acute myocardial infarction. The cytokine-activation and long-term prognosis in myocardial infarction (C-ALPHA) study. Circulation 111:863–870 PubMedCAS Google Scholar
Nikolopoulou A, Tousoulis D, Antoniades C, Petroheilou K, Vasiliadou C, Papageorgiou N, Koniari K, Stefanadi E, Latsios G, Siasos G, Stefanadis C (2008) Common community infections and the risk for coronary artery disease and acute myocardial infarction: evidence for chronic over-expression of tumor necrosis factor alpha and vascular cells adhesion molecule-1. Int J Cardiol 130:246–250 PubMed Google Scholar
Tuomisto K, Jousilahti P, Sundvall J, Pajunen P, Salomaa V (2006) C-reactive protein, interleukin-6 and tumor necrosis factor alpha as predictors of incident coronary and cardiovascular events and total mortality. A population-based, prospective study. Thromb Haemost 95:511–518 PubMedCAS Google Scholar
Dinh W, Futh R, Nickl W, Krahn T, Ellinghaus P, Scheffold T, Bansemir L, Bufe A, Barroso MC, Lankisch M (2009) Elevated plasma levels of TNF-alpha and interleukin-6 in patients with diastolic dysfunction and glucose metabolism disorders. Cardiovasc Diabetol 8:58 PubMed Google Scholar
Safranow K, Dziedziejko V, Rzeuski R, Czyzycka E, Wojtarowicz A, Binczak-Kuleta A, Jakubowska K, Olszewska M, Ciechanowicz A, Kornacewicz-Jach Z, Machalinski B, Pawlik A, Chlubek D (2009) Plasma concentrations of TNF-α and its soluble receptors sTNFR1 and sTNFR2 in patients with coronary artery disease. Tissue Antigens 74:386–392 PubMedCAS Google Scholar
Vasan RS, Sullivan LM, Roubenoff R, Dinarello CA, Harris T, Benjamin EJ, Sawyer DB, Levy D, Wilson PWF, D’Agostino RB (2003) Inflammatory markers and risk of heart failure in elderly subjects without prior myocardial infarction. Circulation 107:1486–1491 PubMedCAS Google Scholar
Tamariz L, Hare JM (2010) Inflammatory cytokines in heart failure: roles in aetiology and utility as biomarkers. Eur Heart J 31:768–770 PubMedCAS Google Scholar
Deswal A, Petersen NJ, Feldman AM, Young JB, White BG, Mann DL (2001) Cytokines and cytokine receptors in advanced heart failure. An analysis of the cytokine database from the vesnarinone trial (VEST). Circulation 103:2055–2059 PubMedCAS Google Scholar
Ferrari R, Bachetti T, Confortini R, Opasich C, Febo O, Corti A, Cassani G, Visioli O (1995) Tumor necrosis factor soluble receptors in patients with various degrees of congestive heart failure. Circulation 92:1479–1486 PubMedCAS Google Scholar
Rauchhaus M, Doehner W, Francis DP, Davos C, Kemp M, Liebenthal C, Niebauer J, Hooper J, Volk H-D, Coats AJS, Anker SD (2000) Plasma cytokine parameters and mortality in patients with chronic heart failure. Circulation 102:3060–3067 PubMedCAS Google Scholar
Tracey D, Klareskog L, Sasso EH, Salfeld JG, Tak PP (2008) Tumor necrosis factor antagonist mechanisms of action: a comprehensive review. Pharmacol Ther 117:244–279 PubMedCAS Google Scholar
Deswal A, Bozkurt B, Seta Y, Parilti-Eiswirth S, Hayes FA, Blosch C, Mann DL (1999) Safety and efficacy of a soluble P75 tumor necrosis factor receptor (enbrel, etanercept) in patients with advanced heart failure. Circulation 99:3224–3226 PubMedCAS Google Scholar
Bozkurt B, Torre-Amione G, Smith Warren M, Whitmore J, Soran OZ, Feldman AM, Mann DL (2001) Results of targeted anti-tumor necrosis factor therapy with etanercept (ENBREL) in patients with advanced heart failure. Circulation 103:1044–1047 PubMedCAS Google Scholar
Mann DL, McMurray JJV, Packer M, Swedberg K, Borer JS, Colucci WS, Dijan J, Drexler H, Feldman A, Kober L, Krum H, Liu P, Nieminen M, Tavazzi L, van Veldhuisen DJ, Waldenstrom A, Warren M, Westheim A, Zannad F, Fleming T (2004) Targeted anticytokine therapy in patients with chronic heart failure. Results of the randomized etanercept worldwide evaluation (RENEWAL). Circulation 109:1594–1602 PubMedCAS Google Scholar
Fildes JE, Shaw SM, Yonan N, Williams SG (2009) The immune system and chronic heart failure: is the heart in control? J Am Coll Cardiol 53:1013–1020 PubMedCAS Google Scholar
Chung ES, Packer M, Hung K, Lo KH, Fasanmade AA, Willerson JT (2003) Randomized, double-blind, placebo-controlled, pilot trial of infliximab, a chimeric monoclonal antibody to tumor necrosis factor-α, in patients with moderate-to-severe heart failure. Circulation 107:3133–3140 PubMedCAS Google Scholar
Kwon HJ, Cote TR, Cuffe MS, Kramer JM, Braun MM (2003) Case reports of heart failure after therapy with a tumor necrosis factor antagonist. Ann Intern Med 138:807–811 PubMed Google Scholar
Libby P, Crea F (2010) Clinical implications of inflammation for cardiovascular primary prevention. Eur Heart J 31:777–783 PubMedCAS Google Scholar
Torre-Amione G (2005) Immune activation in chronic heart failure. Am J Cardiol 95:3C–8C PubMedCAS Google Scholar
Zhang ML, Mei J, Archer LA, Obayashi M, Diao N, Stuyvers B, Ter Keurs HE (2009) Effects of therapy using the Celacade system on structural and functional cardiac remodelling in rats following myocardial infarction. Can J Cardiol 25:e241–e247 PubMedCAS Google Scholar
Torre-Amione G, Anker SD, Bourge RC, Colucci WS, Greenberg BH, Hildebrandt P, Keren A, Motro M, Moye LA, Otterstad JE, Pratt CM, Ponikowski P, Rouleau JL, Sestier F, Winkelmann BR, Young JB (2008) Results of a non-specific immunomodulation therapy in chronic heart failure (ACCLAIM trial): a placebo-controlled randomised trial. Lancet 371:228–236 PubMedCAS Google Scholar