A novel micro-scaled multi-layered optical stress sensor for force sensing (original) (raw)

References

  1. Kalasin, S., Sangnuang, P., Surareungchai, W.: Satellite-based sensor for environmental heat-stress sweat creatinine monitoring: the remote artificial intelligence-assisted epidermal wearable sensing for health evaluation. ACS Biomater. Sci. Eng. 7(1), 322 (2021)
    Article Google Scholar
  2. H. Goyal, R. Mann, Z. Gandhi, A. Perisetti, Z. H. Zhang, N. Sharma, S. Saligram, S. Inamdar, and B. Tharian, Application of artificial intelligence in pancreaticobiliary diseases, Ther. Adv. Gastrointest. Endosc. 14 (2021)
  3. Wu, H.Q., Dai, Q.H.: Artificial intelligence accelerated by light. Nature 589(7840), 25 (2021)
    Article Google Scholar
  4. Reddy, B.S.N., Pramada, S.K., Roshni, T.: Monthly surface runoff prediction using artificial intelligence: a study from a tropical climate river basin. J. Earth Syst. Sci. 130(1), 35 (2021)
    Article Google Scholar
  5. Scheetz, J., He, M., van Wijngaarden, P.: Ophthalmology and the emergence of artificial intelligence. Med. J. Australia 214(4), 155 (2021)
    Article Google Scholar
  6. Jacques, T., Fournier, L., Zins, M., Adamsbaum, C., Chaumoitre, K., Feydy, A., Millet, I., Montaudon, M., Beregi, J.-P., Bartoli, J.-M., Cart, P., Masson, J.-P., Meder, J.-F., Boyer, L., Cotten, A.: Proposals for the use of artificial intelligence in emergency radiology. Diagn. Interv. Imaging 102(2), 63 (2021)
    Article Google Scholar
  7. Edwards, S.D.: The HeartMath coherence model: implications and challenges for artificial intelligence and robotics. AI & Soc. 34(4), 899 (2019)
    Article Google Scholar
  8. Li, X.: Research on tourism industrial cluster and information platform based on Internet of things technology. J. Distrib. Sens. N, Int (2019). https://doi.org/10.1177/1550147719858840
    Book Google Scholar
  9. Ang, K.L.M., Seng, J.K.P.: Application Specific Internet of Things (ASIoTs): taxonomy, applications, use case and future directions. IEEE Access 7, 56577 (2019)
    Article Google Scholar
  10. Wang, W., Yiu, H.H.P., Li, W.J., Roy, V.A.L.: The principle and architectures of optical stress sensors and the progress on the development of microbend optical sensors. Adv. Opt. Mater. 9(10), 2001693 (2021)
    Article Google Scholar
  11. Ge, J., Sun, L., Zhang, F.-R., Zhang, Y., Shi, L.-A., Zhao, H.-Y., Zhu, H.-W., Jiang, H.-L., Yu, S.-H.: A stretchable electronic fabric artificial skin with pressure-, lateral strain-, and flexion-sensitive properties. Adv. Mater. 28(4), 722 (2016)
    Article Google Scholar
  12. Hu, F., Zhang, L., Liu, W.Z., Guo, X.X., Shi, L., Liu, X.Y.: Gel-based artificial photonic skin to sense a gentle touch by reflection. ACS Appl. Mater. Interfaces 11(17), 15195 (2019)
    Article Google Scholar
  13. Heo, S.H., Kim, C., Kim, T.S., Park, H.S.: Human-palm-inspired artificial skin material enhances operational functionality of hand manipulation. Adv. Funct. Mater. 30, 2002360 (2020)
    Article Google Scholar
  14. Liang, F., Fan, Y.J., Kuang, S.Y., Wang, H.L., Wang, Y., Xu, P., Wang, Z.L., Zhu, G.: Layer-by-layer assembly of nanofiber/nanoparticle artificial skin for strain-insensitive UV shielding and visualized UV detection. Adv. Mater. Technol. 5(4), 1900976 (2020)
    Article Google Scholar
  15. Park, S., Shin, B.G., Jang, S., Chung, K.: Three-dimensional self-healable touch sensing artificial skin device. ACS Appl. Mater. Interfaces 12(3), 3953 (2020)
    Article Google Scholar
  16. Low, Z.W.K., Li, Z.B., Owh, C., Chee, P.L., Ye, E.Y., Kai, D., Yang, D.P., Loh, X.J.: Using artificial skin devices as skin replacements: Insights into superficial treatment. Small 15(9), 1805453 (2019)
    Article Google Scholar
  17. Sun, Q.-J., Zhao, X.-H., Yeung, C.-C., Tian, Q., Kong, K.-W., Wu, W., Venkatesh, S., Li, W.-J., Roy, V.A.L.: Bioinspired, self-powered, and highly sensitive electronic skin for sensing static and dynamic pressures. ACS Appl. Mater. Interfaces 12(33), 37239 (2020)
    Article Google Scholar
  18. Sun, Q.-J., Zhao, X.-H., Zhou, Y., Yeung, C.-C., Wu, W., Venkatesh, S., Xu, Z.-X., Wylie, J.J., Li, W.-J., Roy, V.A.L.: Fingertip-skin-inspired highly sensitive and multifunctional sensor with hierarchically structured conductive graphite/polydimethylsiloxane foams. Adv. Funct. Mater. 29(18), 1808829 (2019)
    Article Google Scholar
  19. Sun, Q.-J., Li, T., Wu, W., Venkatesh, S., Zhao, X.-H., Xu, Z.-X., Roy, V.A.L.: Printed high-k dielectric for flexible low-power extended gate field-effect transistor in sensing pressure. ACS Appl. Electron. Mater. 1(5), 711 (2019)
    Article Google Scholar
  20. Sun, Q.J., Zhuang, J.Q., Venkatesh, S., Zhou, Y., Han, S.T., Wu, W., Kong, K.W., Li, W.J., Chen, X.F., Li, R.K.Y., Roy, V.A.L.: Highly sensitive and ultrastable skin sensors for biopressure and bioforce measurements based on hierarchical microstructures. ACS Appl. Mater. Interfaces 10(4), 4086 (2018)
    Article Google Scholar
  21. Lim, Y., Park, J.: Sensor resource sharing approaches in sensor-cloud infrastructure. Int. J. Distrib. Sens. N. 2014, 476090 (2014)
    Article Google Scholar
  22. Basjaruddin, N.C., Syahbarudin, F., Sutjiredjeki, E.: Measurement Device for Stress Level and Vital Sign Based on Sensor Fusion. Healthc. Inform. Res. 27(1), 11 (2021)
    Article Google Scholar
  23. Kayed, M.O., Balbola, A.A., Lou, E., Moussa, W.A.: Development of MEMS-based piezoresistive 3D stress/strain sensor using strain technology and smart temperature compensation. J. Micromech. Microeng. 31(3), 035010 (2021)
    Article Google Scholar
  24. T. Tran Quang and N.-E. Lee, Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare, Adv. Mater. 28 (22), 4338 (2016)
  25. Khan, Y., Ostfeld, A.E., Lochner, C.M., Pierre, A., Arias, A.C.: Monitoring of vital signs with flexible and wearable medical devices. Adv. Mater. 28(22), 4373 (2016)
    Article Google Scholar
  26. Pang, C., Koo, J.H., Amanda, N., Caves, J.M., Kim, M.-G., Chortos, A., Kim, K., Wang, P.J., Tok, J.B.H., Bao, Z.: Highly skin-conformal microhairy sensor for pulse signal amplification. Adv. Mater. 27(4), 634 (2015)
    Article Google Scholar
  27. Milici, S., Lazaro, A., Villarino, R., Girbau, D., Magnarosa, M.: Wireless Wearable Magnetometer-Based Sensor for Sleep Quality Monitoring. IEEE Sens. J. 18(5), 2145 (2018)
    Article Google Scholar
  28. Chen, J., Abbod, M., Shieh, J.S.: Pain and Stress Detection Using Wearable Sensors and Devices-A Review. Sensors 21(4), 1030 (2021)
    Article Google Scholar
  29. Georgopoulou, A., Michel, S., Vanderborght, B., Clemens, F.: Piezoresistive sensor fiber composites based on silicone elastomers for the monitoring of the position of a robot arm. Sens. Actuator. A Phys. 318, 112433 (2021)
    Article Google Scholar
  30. Wang, X., Liu, Z., Zhang, T.: Flexible sensing electronics for wearable/attachable health monitoring. Small 13(25), 1602790 (2017)
    Article Google Scholar
  31. Kenry, J. C. Yeo, and C. T. Lim, Emerging flexible and wearable physical sensing platforms for healthcare and biomedical applications, Microsyst. Nanoeng. 2, 16043 (2016)
  32. Wang, J.L., Lu, C.H., Zhang, K.: Textile-Based Strain Sensor for Human Motion Detection. Energy Environ. Mater. 3(1), 80 (2020)
    Article Google Scholar
  33. Chen, W., Yan, X.: Progress in achieving high-performance piezoresistive and capacitive flexible pressure sensors: A review. J. Mater. Sci. Technol. 43, 175 (2020)
    Article Google Scholar
  34. Rivadeneyra, A., Lopez-Villanueva, J.A.: Recent Advances in Printed Capacitive Sensors. Micromachines 11(4), 20 (2020)
    Article Google Scholar
  35. Song, P.S., Ma, Z., Ma, J., Yang, L.L., Wei, J.T., Zhao, Y.M., Zhang, M.L., Yang, F.H., Wang, X.D.: Recent Progress of Miniature MEMS Pressure Sensors. Micromachines 11(1), 38 (2020)
    Article Google Scholar
  36. Lu, T.W., Lee, P.T.: Ultra-high sensitivity optical stress sensor based on double-layered photonic crystal microcavity. Opt. Express 17(3), 1518 (2009)
    Article Google Scholar
  37. Gafsi, R., Lecoy, P., Malki, A.: Stress optical fiber sensor using light coupling between two laterally fused multimode optical fibers. Appl. Optics 37(16), 3417 (1998)
    Article Google Scholar
  38. Su, L., Chiang, K.S., Lu, C.: Fiber Bragg-grating incorporated microbend sensor for simultaneous mechanical parameter and temperature measurement. IEEE Photonics Technol. Lett. 17(12), 2697 (2005)
    Article Google Scholar
  39. Chen, Z.H., Lau, D., Teo, J.T., Ng, S.H., Yang, X.F., Kei, P.L.: Simultaneous measurement of breathing rate and heart rate using a microbend multimode fiber optic sensor. J. Biomed. Opt. 19(5), 057001 (2014)
    Article Google Scholar
  40. A. Bichler, S. Lecler, B. Serio, S. Fischer, and P. Pfeiffer, Mode couplings and elasto-optic effects study in a proposed mechanical microperturbed multimode optical fiber sensor, J. Opt. Soc. Am. A-Opt. Image Sci. Vis. 29 (11), 2386 (2012)
  41. MacLean, A., Moran, C., Johnstone, W., Culshaw, B., Marsh, D., Parker, P.: Detection of hydrocarbon fuel spills using a distributed fibre optic sensor. Sens. Actuator A-Phys. 109(1–2), 60 (2003)
    Article Google Scholar
  42. Lau, D., Chen, Z.H., Teo, J.T., Ng, S.H., Rumpel, H., Lian, Y., Yang, H., Kei, P.L.: Intensity-modulated microbend fiber optic sensor for respiratory monitoring and gating during MRI. IEEE Trans. Biomed. Eng. 60(9), 2655 (2013)
    Article Google Scholar
  43. Jenstrom, D.T., Chen, C.L.: A fiber optic microbend tactile sensor array. Sens. Actuators 20(3), 239 (1989)
    Article Google Scholar
  44. Linec, M., Donlagic, D.: A plastic optical fiber microbend sensor used as a low-cost anti-squeeze detector. IEEE Sens. J. 7(9–10), 1262 (2007)
    Article Google Scholar
  45. Sadek, I., Seet, E., Biswas, J., Abdulrazak, B., Mokhtari, M.: Nonintrusive vital signs monitoring for sleep apnea patients: A preliminary study. IEEE Access 6, 2506 (2018)
    Article Google Scholar
  46. Yang, X.F., Chen, Z.H., Elvin, C.S.M., Janice, L.H.Y., Ng, S.H., Teo, J.T., Wu, R.F.: Textile fiber optic microbend sensor used for heartbeat and respiration monitoring. IEEE Sens. J. 15(2), 757 (2015)
    Article Google Scholar
  47. Lagakos, N., Trott, W.J., Hickman, T.R., Cole, J.H., Bucaro, J.A.: Microbend fiber-optic sensor as extended hydrophone. IEEE J. Quantum Electron. 18(10), 1633 (1982)
    Article Google Scholar
  48. Grossman, B.G., Yongphiphatwong, T., Sokol, M.: In situ device for salinity measurements (chloride detection) of ocean surface. Opt. Laser Technol. 37(3), 217 (2005)
    Article Google Scholar
  49. Wu, L.C., Wang, Q., Guo, M.J., Du, C., Zhang, Y.N.: Characterization of displacement sensing based on fiber optic microbend losses. Instrum. Sci. Technol. 44(5), 471 (2016)
    Article Google Scholar
  50. Diemeer, M.B.J., Trommel, E.S.: Fiber-optic microbend sensors: sensitivity as a function of distortion wavelength. Opt. Lett. 9(6), 260 (1984)
    Article Google Scholar
  51. Horsthuis, W.H.G., Fluitman, J.H.J.: The development of fibre optic microbend sensors. Sens. Actuators 3(2), 99 (1983)
    Google Scholar
  52. Mekhtiev, A.D., Yurchenko, A.V., Neshina, E.G., Al’kina, A.D., Madi, P.S.: Physical Principles of Developing Pressure Sensors Using Refractive Index Changes in Optical Fiber Microbending. Russ. Phys. J. 63(2), 323 (2020)
    Article Google Scholar
  53. Pandey, N.K., Yadav, B.C.: Embedded fibre optic microbend sensor for measurement of high pressure and crack detection. Sens. Actuator A-Phys. 128(1), 33 (2006)
    Article Google Scholar
  54. Luo, F., Liu, J.Y., Ma, N.B., Morse, T.F.: A fiber optic microbend sensor for distributed sensing application in the structural strain monitoring. Sens. Actuator A-Phys. 75(1), 41 (1999)
    Article Google Scholar
  55. COMSOL Multiphysics® v. 5.5. cn.comsol.com. COMSOL AB, Stockholm, Sweden.
  56. Denu, G.A., Liu, Z.C., Fu, J., Wang, H.X.: A finite element analysis of the effects of geometrical shape on the elastic properties of chemical vapor deposited diamond nanowire. AIP Adv. 7(1), 015025 (2017)
    Article Google Scholar
  57. Sapra, G., Sharma, P.: Design and analysis of MEMS MWCNT/epoxy strain sensor using COMSOL. Pramana 89(1), 10 (2017)
    Article Google Scholar
  58. Ainslie, M.D., Huang, K.Y., Fujishiro, H., Chaddock, J., Takahashi, K., Namba, S., Cardwell, D.A., Durrell, J.H.: Numerical modelling of mechanical stresses in bulk superconductor magnets with and without mechanical reinforcement. Supercond. Sci. Technol. 32(3), 034002 (2019)
    Article Google Scholar
  59. Lee, Y.H., Kim, H.O., Kim, Y.J.: Structural Characteristics of a Conical-Frustum-Patterned Stretchable Heater in an External-Force Environment. J. Nanosci. Nanotechno. 18(9), 6606 (2018)
    Article Google Scholar
  60. Velamuri, A.V., Patel, K., Sharma, I., Gupta, S.S., Gaikwad, S., Krishnamurthy, P.K.: Investigation of Planar and Helical Bend Losses in Single- and Few-Mode Optical Fibers. J. Lightwave Technol. 37(14), 3544 (2019)
    Article Google Scholar
  61. Hammond, C.R., Norman, S.R.: Silica based binary glass systems-refractive index behavior and composition in optical fibers. Opt. Quantum Electron. 9(5), 399 (1977)
    Article Google Scholar
  62. Toupin, P., Brilland, L., Méchin, D., Adam, J., Troles, J.: Optical Aging of Chalcogenide Microstructured Optical Fibers. J. Lightwave Technol. 32(13), 2428 (2014)
    Article Google Scholar
  63. Rault, G., Adam, J.L., Smektala, F., Lucas, J.: Fluoride glass compositions for waveguide applications. J. Fluorine Chem. 110(2), 165 (2001)
    Article Google Scholar
  64. Byun, I., Kim, B.: Fabrication of three-dimensional PDMS microstructures by selective bonding and cohesive mechanical failure. Microelectron. Eng. 121, 92 (2014)
    Article Google Scholar
  65. Donlagic, D., Zavrsnik, M.: Fiber-optic microbend sensor structure. Opt. Lett. 22(11), 837 (1997)
    Article Google Scholar
  66. Lagakos, N., Cole, J.H., Bucaro, J.A.: Microbend fiber-optic sensor. Appl. Optics 26(11), 2171 (1987)
    Article Google Scholar
  67. Mawlud, S.Q., Muhamad, N.Q.: Theoretical and Experimental Study of a Numerical Aperture for Multimode PCS Fiber Optics Using an Imaging Technique. Chin. Phys. Lett. 29(11), 114217 (2012)
    Article Google Scholar
  68. Wadsworth, W.J., Percival, R.M., Bouwmans, G., Knight, J.C., Birks, T.A., Hedley, T.D., Russell, P.S.J.: Very high numerical aperture fibers. IEEE Photonics Technol. Lett. 16(3), 843 (2004)
    Article Google Scholar
  69. Issa, N.A.: High numerical aperture in multimode microstructured optical fibers. Appl. Optics 43(33), 6191 (2004)
    Article Google Scholar
  70. Krishna, B., Chaturvedi, A., Mishra, N., Das, K.: Nanomechanical characterization of SU8/ZnO nanocomposite films for applications in energy-harvesting microsystems. J. Micromech. Microeng. 28(11), 115013 (2018)
    Article Google Scholar
  71. Wang, X., Gao, W., Hung, J., Tam, W.Y.: Optical activities of large-area SU8 microspirals fabricated by multibeam holographic lithography. Appl. Optics 53(11), 2425 (2014)
    Article Google Scholar
  72. Presby, H.M., Marcuse, D.: Refractive index and diameter determinations of step index optical fibers and preforms. Appl. Optics 13(12), 2882 (1974)
    Article Google Scholar
  73. Dunklin, J.R., Forcherio, G.T., Berry, K.R., Roper, D.K.: Gold nanoparticle-polydimethylsiloxane thin films enhance thermoplasmonic dissipation by internal reflection. J. Phys. Chem. C 118(14), 7523 (2014)
    Article Google Scholar
  74. Baumert, J., Hoffnagle, J.: Numerical method for the calculation of mode fields and propagation constants in optical waveguides. J. Lightwave Technol. 4(11), 1626 (1986)
    Article Google Scholar
  75. Berenger, J.-P.: A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114(2), 185 (1994)
    Article MathSciNet MATH Google Scholar
  76. Zhou, D., Huang, W.P., Xu, C.L., Fang, D.G., Chen, B.: The perfectly matched layer boundary condition for scalar finite-difference time-domain method. IEEE Photon. Technol. Lett. 13(5), 454 (2001)
    Article Google Scholar
  77. Davidson, D.B., Botha, M.M.: Evaluation of a spherical PML for vector FEM applications. IEEE Trans. Antennas Propag. 55(2), 494 (2007)
    Article MathSciNet MATH Google Scholar
  78. Selleri, S., Vincetti, L., Cucinotta, A., Zoboli, M.: Complex FEM modal solver of optical waveguides with PML boundary conditions. Opt. Quantum Electron. 33(4), 359 (2001)
    Article Google Scholar
  79. Hastings, M.C., Chiu, B., Nippa, D.W.: Engineering the development of optical fiber sensors for adverse environments. Nucl. Eng. Des. 167(3), 239 (1997)
    Article Google Scholar
  80. Huang, C., Wang, W., Wu, W., Ledoux, W.R.: Composite optical bend loss sensor for pressure and shear measurement. IEEE Sens. J. 7(11), 1554 (2007)
    Article Google Scholar
  81. Jiguet, S., Judelewicz, M., Mischler, S., Bertch, A., Renaud, P.: Effect of filler behavior on nanocomposite SU8 photoresist for moving micro-parts. Microelectron. Eng. 83(4), 1273 (2006)
    Article Google Scholar
  82. Viannie, L.R., Jayanth, G.R., Radhakrishna, V., Rajanna, K.: Fabrication and nonlinear thermomechanical analysis of SU8 thermal actuator. J. Microelectromech. Syst. 25(1), 125 (2016)
    Article Google Scholar
  83. Tian, Y.T., Shang, X.B., Lancaster, M.J.: Fabrication of multilayered SU8 structure for terahertz waveguide with ultralow transmission loss. J. Micro/Nanolith. MEMS MOEMS 13(1), 013002 (2014)
    Article Google Scholar
  84. Yang, M., Wu, X., Li, H., Cui, G., Bai, Z., Wang, L., Kraft, M., Liu, G., Wen, L.: A novel rare cell sorting microfluidic chip based on magnetic nanoparticle labels. J. Micromech. Microeng. 31(3), 034003 (2021)
    Article Google Scholar
  85. Kumar, V., Sharma, N.N.: Synthesis of hydrophilic to superhydrophobic SU8 surfaces. J. Appl. Polym. Sci. 132(18), 41934 (2015)
    Article Google Scholar
  86. Baibarac, M., Radu, A., Cristea, M., Cercel, R., Smaranda, I.: UV light effect on cationic photopolymerization of the SU8 photoresist and its composites with carbon nanotubes: new evidence shown by photoluminescence studies. J. Phys. Chem. C 124(13), 7467 (2020)
    Article Google Scholar
  87. Nordstroem, M., Zauner, D.A., Boisen, A., Huebner, J.: Single-mode waveguides with SU-8 polymer core and cladding for MOEMS applications. J. Lightwave Technol. 25(5), 1284 (2007)
    Article Google Scholar
  88. Shi, J.H., Wang, Z.P.: Designs of infrared nonpolarizing beam splitters with a Ag layer in a glass cube. Appl. Optics 47(14), 2619 (2008)
    Article Google Scholar
  89. Ovchinnikov, Y.B.: A planar waveguide beam splitter. Opt. Commun. 220(4), 229 (2003)
    Article Google Scholar
  90. Sibin, K.P., Selvakumar, N., Kumar, A., Dey, A., Sridhara, N., Shashikala, H.D., Sharma, A.K., Barshilia, H.C.: Design and development of ITO/Ag/ITO spectral beam splitter coating for photovoltaic-thermoelectric hybrid systems. Sol. Energy 141, 118 (2017)
    Article Google Scholar
  91. Homes, C.C., Carr, G.L., Lobo, R.P.S.M., LaVeigne, J.D., Tanner, D.B.: Silicon beam splitter for far-infrared and terahertz spectroscopy. Appl. Opt. 46(32), 7884 (2007)
    Article Google Scholar
  92. Tao, L., Deng, S., Gao, H., Lv, H., Wen, X., Li, M.: Experimental investigation of the dielectric constants of thin noble metallic films using a surface plasmon resonance sensor. Sensors 20(5), 1505 (2020)
    Article Google Scholar
  93. Wang, Q., Zhang, Y., Chen, G., Chen, Z., Hee, H.I.: Assessment of Heart Rate and Respiratory Rate for Perioperative Infants Based on ELC Model. IEEE Sens. J. 21(12), 13685 (2021)
    Article Google Scholar

Download references