A novel micro-scaled multi-layered optical stress sensor for force sensing (original) (raw)
References
Kalasin, S., Sangnuang, P., Surareungchai, W.: Satellite-based sensor for environmental heat-stress sweat creatinine monitoring: the remote artificial intelligence-assisted epidermal wearable sensing for health evaluation. ACS Biomater. Sci. Eng. 7(1), 322 (2021) Article Google Scholar
H. Goyal, R. Mann, Z. Gandhi, A. Perisetti, Z. H. Zhang, N. Sharma, S. Saligram, S. Inamdar, and B. Tharian, Application of artificial intelligence in pancreaticobiliary diseases, Ther. Adv. Gastrointest. Endosc. 14 (2021)
Wu, H.Q., Dai, Q.H.: Artificial intelligence accelerated by light. Nature 589(7840), 25 (2021) Article Google Scholar
Reddy, B.S.N., Pramada, S.K., Roshni, T.: Monthly surface runoff prediction using artificial intelligence: a study from a tropical climate river basin. J. Earth Syst. Sci. 130(1), 35 (2021) Article Google Scholar
Scheetz, J., He, M., van Wijngaarden, P.: Ophthalmology and the emergence of artificial intelligence. Med. J. Australia 214(4), 155 (2021) Article Google Scholar
Jacques, T., Fournier, L., Zins, M., Adamsbaum, C., Chaumoitre, K., Feydy, A., Millet, I., Montaudon, M., Beregi, J.-P., Bartoli, J.-M., Cart, P., Masson, J.-P., Meder, J.-F., Boyer, L., Cotten, A.: Proposals for the use of artificial intelligence in emergency radiology. Diagn. Interv. Imaging 102(2), 63 (2021) Article Google Scholar
Edwards, S.D.: The HeartMath coherence model: implications and challenges for artificial intelligence and robotics. AI & Soc. 34(4), 899 (2019) Article Google Scholar
Ang, K.L.M., Seng, J.K.P.: Application Specific Internet of Things (ASIoTs): taxonomy, applications, use case and future directions. IEEE Access 7, 56577 (2019) Article Google Scholar
Wang, W., Yiu, H.H.P., Li, W.J., Roy, V.A.L.: The principle and architectures of optical stress sensors and the progress on the development of microbend optical sensors. Adv. Opt. Mater. 9(10), 2001693 (2021) Article Google Scholar
Ge, J., Sun, L., Zhang, F.-R., Zhang, Y., Shi, L.-A., Zhao, H.-Y., Zhu, H.-W., Jiang, H.-L., Yu, S.-H.: A stretchable electronic fabric artificial skin with pressure-, lateral strain-, and flexion-sensitive properties. Adv. Mater. 28(4), 722 (2016) Article Google Scholar
Hu, F., Zhang, L., Liu, W.Z., Guo, X.X., Shi, L., Liu, X.Y.: Gel-based artificial photonic skin to sense a gentle touch by reflection. ACS Appl. Mater. Interfaces 11(17), 15195 (2019) Article Google Scholar
Heo, S.H., Kim, C., Kim, T.S., Park, H.S.: Human-palm-inspired artificial skin material enhances operational functionality of hand manipulation. Adv. Funct. Mater. 30, 2002360 (2020) Article Google Scholar
Liang, F., Fan, Y.J., Kuang, S.Y., Wang, H.L., Wang, Y., Xu, P., Wang, Z.L., Zhu, G.: Layer-by-layer assembly of nanofiber/nanoparticle artificial skin for strain-insensitive UV shielding and visualized UV detection. Adv. Mater. Technol. 5(4), 1900976 (2020) Article Google Scholar
Low, Z.W.K., Li, Z.B., Owh, C., Chee, P.L., Ye, E.Y., Kai, D., Yang, D.P., Loh, X.J.: Using artificial skin devices as skin replacements: Insights into superficial treatment. Small 15(9), 1805453 (2019) Article Google Scholar
Sun, Q.-J., Zhao, X.-H., Yeung, C.-C., Tian, Q., Kong, K.-W., Wu, W., Venkatesh, S., Li, W.-J., Roy, V.A.L.: Bioinspired, self-powered, and highly sensitive electronic skin for sensing static and dynamic pressures. ACS Appl. Mater. Interfaces 12(33), 37239 (2020) Article Google Scholar
Sun, Q.-J., Li, T., Wu, W., Venkatesh, S., Zhao, X.-H., Xu, Z.-X., Roy, V.A.L.: Printed high-k dielectric for flexible low-power extended gate field-effect transistor in sensing pressure. ACS Appl. Electron. Mater. 1(5), 711 (2019) Article Google Scholar
Sun, Q.J., Zhuang, J.Q., Venkatesh, S., Zhou, Y., Han, S.T., Wu, W., Kong, K.W., Li, W.J., Chen, X.F., Li, R.K.Y., Roy, V.A.L.: Highly sensitive and ultrastable skin sensors for biopressure and bioforce measurements based on hierarchical microstructures. ACS Appl. Mater. Interfaces 10(4), 4086 (2018) Article Google Scholar
Lim, Y., Park, J.: Sensor resource sharing approaches in sensor-cloud infrastructure. Int. J. Distrib. Sens. N. 2014, 476090 (2014) Article Google Scholar
Basjaruddin, N.C., Syahbarudin, F., Sutjiredjeki, E.: Measurement Device for Stress Level and Vital Sign Based on Sensor Fusion. Healthc. Inform. Res. 27(1), 11 (2021) Article Google Scholar
Kayed, M.O., Balbola, A.A., Lou, E., Moussa, W.A.: Development of MEMS-based piezoresistive 3D stress/strain sensor using strain technology and smart temperature compensation. J. Micromech. Microeng. 31(3), 035010 (2021) Article Google Scholar
T. Tran Quang and N.-E. Lee, Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare, Adv. Mater. 28 (22), 4338 (2016)
Khan, Y., Ostfeld, A.E., Lochner, C.M., Pierre, A., Arias, A.C.: Monitoring of vital signs with flexible and wearable medical devices. Adv. Mater. 28(22), 4373 (2016) Article Google Scholar
Pang, C., Koo, J.H., Amanda, N., Caves, J.M., Kim, M.-G., Chortos, A., Kim, K., Wang, P.J., Tok, J.B.H., Bao, Z.: Highly skin-conformal microhairy sensor for pulse signal amplification. Adv. Mater. 27(4), 634 (2015) Article Google Scholar
Milici, S., Lazaro, A., Villarino, R., Girbau, D., Magnarosa, M.: Wireless Wearable Magnetometer-Based Sensor for Sleep Quality Monitoring. IEEE Sens. J. 18(5), 2145 (2018) Article Google Scholar
Chen, J., Abbod, M., Shieh, J.S.: Pain and Stress Detection Using Wearable Sensors and Devices-A Review. Sensors 21(4), 1030 (2021) Article Google Scholar
Georgopoulou, A., Michel, S., Vanderborght, B., Clemens, F.: Piezoresistive sensor fiber composites based on silicone elastomers for the monitoring of the position of a robot arm. Sens. Actuator. A Phys. 318, 112433 (2021) Article Google Scholar
Wang, X., Liu, Z., Zhang, T.: Flexible sensing electronics for wearable/attachable health monitoring. Small 13(25), 1602790 (2017) Article Google Scholar
Kenry, J. C. Yeo, and C. T. Lim, Emerging flexible and wearable physical sensing platforms for healthcare and biomedical applications, Microsyst. Nanoeng. 2, 16043 (2016)
Wang, J.L., Lu, C.H., Zhang, K.: Textile-Based Strain Sensor for Human Motion Detection. Energy Environ. Mater. 3(1), 80 (2020) Article Google Scholar
Chen, W., Yan, X.: Progress in achieving high-performance piezoresistive and capacitive flexible pressure sensors: A review. J. Mater. Sci. Technol. 43, 175 (2020) Article Google Scholar
Rivadeneyra, A., Lopez-Villanueva, J.A.: Recent Advances in Printed Capacitive Sensors. Micromachines 11(4), 20 (2020) Article Google Scholar
Lu, T.W., Lee, P.T.: Ultra-high sensitivity optical stress sensor based on double-layered photonic crystal microcavity. Opt. Express 17(3), 1518 (2009) Article Google Scholar
Gafsi, R., Lecoy, P., Malki, A.: Stress optical fiber sensor using light coupling between two laterally fused multimode optical fibers. Appl. Optics 37(16), 3417 (1998) Article Google Scholar
Su, L., Chiang, K.S., Lu, C.: Fiber Bragg-grating incorporated microbend sensor for simultaneous mechanical parameter and temperature measurement. IEEE Photonics Technol. Lett. 17(12), 2697 (2005) Article Google Scholar
Chen, Z.H., Lau, D., Teo, J.T., Ng, S.H., Yang, X.F., Kei, P.L.: Simultaneous measurement of breathing rate and heart rate using a microbend multimode fiber optic sensor. J. Biomed. Opt. 19(5), 057001 (2014) Article Google Scholar
A. Bichler, S. Lecler, B. Serio, S. Fischer, and P. Pfeiffer, Mode couplings and elasto-optic effects study in a proposed mechanical microperturbed multimode optical fiber sensor, J. Opt. Soc. Am. A-Opt. Image Sci. Vis. 29 (11), 2386 (2012)
MacLean, A., Moran, C., Johnstone, W., Culshaw, B., Marsh, D., Parker, P.: Detection of hydrocarbon fuel spills using a distributed fibre optic sensor. Sens. Actuator A-Phys. 109(1–2), 60 (2003) Article Google Scholar
Lau, D., Chen, Z.H., Teo, J.T., Ng, S.H., Rumpel, H., Lian, Y., Yang, H., Kei, P.L.: Intensity-modulated microbend fiber optic sensor for respiratory monitoring and gating during MRI. IEEE Trans. Biomed. Eng. 60(9), 2655 (2013) Article Google Scholar
Jenstrom, D.T., Chen, C.L.: A fiber optic microbend tactile sensor array. Sens. Actuators 20(3), 239 (1989) Article Google Scholar
Linec, M., Donlagic, D.: A plastic optical fiber microbend sensor used as a low-cost anti-squeeze detector. IEEE Sens. J. 7(9–10), 1262 (2007) Article Google Scholar
Sadek, I., Seet, E., Biswas, J., Abdulrazak, B., Mokhtari, M.: Nonintrusive vital signs monitoring for sleep apnea patients: A preliminary study. IEEE Access 6, 2506 (2018) Article Google Scholar
Yang, X.F., Chen, Z.H., Elvin, C.S.M., Janice, L.H.Y., Ng, S.H., Teo, J.T., Wu, R.F.: Textile fiber optic microbend sensor used for heartbeat and respiration monitoring. IEEE Sens. J. 15(2), 757 (2015) Article Google Scholar
Lagakos, N., Trott, W.J., Hickman, T.R., Cole, J.H., Bucaro, J.A.: Microbend fiber-optic sensor as extended hydrophone. IEEE J. Quantum Electron. 18(10), 1633 (1982) Article Google Scholar
Grossman, B.G., Yongphiphatwong, T., Sokol, M.: In situ device for salinity measurements (chloride detection) of ocean surface. Opt. Laser Technol. 37(3), 217 (2005) Article Google Scholar
Wu, L.C., Wang, Q., Guo, M.J., Du, C., Zhang, Y.N.: Characterization of displacement sensing based on fiber optic microbend losses. Instrum. Sci. Technol. 44(5), 471 (2016) Article Google Scholar
Diemeer, M.B.J., Trommel, E.S.: Fiber-optic microbend sensors: sensitivity as a function of distortion wavelength. Opt. Lett. 9(6), 260 (1984) Article Google Scholar
Horsthuis, W.H.G., Fluitman, J.H.J.: The development of fibre optic microbend sensors. Sens. Actuators 3(2), 99 (1983) Google Scholar
Mekhtiev, A.D., Yurchenko, A.V., Neshina, E.G., Al’kina, A.D., Madi, P.S.: Physical Principles of Developing Pressure Sensors Using Refractive Index Changes in Optical Fiber Microbending. Russ. Phys. J. 63(2), 323 (2020) Article Google Scholar
Pandey, N.K., Yadav, B.C.: Embedded fibre optic microbend sensor for measurement of high pressure and crack detection. Sens. Actuator A-Phys. 128(1), 33 (2006) Article Google Scholar
Luo, F., Liu, J.Y., Ma, N.B., Morse, T.F.: A fiber optic microbend sensor for distributed sensing application in the structural strain monitoring. Sens. Actuator A-Phys. 75(1), 41 (1999) Article Google Scholar
COMSOL Multiphysics® v. 5.5. cn.comsol.com. COMSOL AB, Stockholm, Sweden.
Denu, G.A., Liu, Z.C., Fu, J., Wang, H.X.: A finite element analysis of the effects of geometrical shape on the elastic properties of chemical vapor deposited diamond nanowire. AIP Adv. 7(1), 015025 (2017) Article Google Scholar
Sapra, G., Sharma, P.: Design and analysis of MEMS MWCNT/epoxy strain sensor using COMSOL. Pramana 89(1), 10 (2017) Article Google Scholar
Ainslie, M.D., Huang, K.Y., Fujishiro, H., Chaddock, J., Takahashi, K., Namba, S., Cardwell, D.A., Durrell, J.H.: Numerical modelling of mechanical stresses in bulk superconductor magnets with and without mechanical reinforcement. Supercond. Sci. Technol. 32(3), 034002 (2019) Article Google Scholar
Lee, Y.H., Kim, H.O., Kim, Y.J.: Structural Characteristics of a Conical-Frustum-Patterned Stretchable Heater in an External-Force Environment. J. Nanosci. Nanotechno. 18(9), 6606 (2018) Article Google Scholar
Velamuri, A.V., Patel, K., Sharma, I., Gupta, S.S., Gaikwad, S., Krishnamurthy, P.K.: Investigation of Planar and Helical Bend Losses in Single- and Few-Mode Optical Fibers. J. Lightwave Technol. 37(14), 3544 (2019) Article Google Scholar
Hammond, C.R., Norman, S.R.: Silica based binary glass systems-refractive index behavior and composition in optical fibers. Opt. Quantum Electron. 9(5), 399 (1977) Article Google Scholar
Toupin, P., Brilland, L., Méchin, D., Adam, J., Troles, J.: Optical Aging of Chalcogenide Microstructured Optical Fibers. J. Lightwave Technol. 32(13), 2428 (2014) Article Google Scholar
Rault, G., Adam, J.L., Smektala, F., Lucas, J.: Fluoride glass compositions for waveguide applications. J. Fluorine Chem. 110(2), 165 (2001) Article Google Scholar
Byun, I., Kim, B.: Fabrication of three-dimensional PDMS microstructures by selective bonding and cohesive mechanical failure. Microelectron. Eng. 121, 92 (2014) Article Google Scholar
Donlagic, D., Zavrsnik, M.: Fiber-optic microbend sensor structure. Opt. Lett. 22(11), 837 (1997) Article Google Scholar
Mawlud, S.Q., Muhamad, N.Q.: Theoretical and Experimental Study of a Numerical Aperture for Multimode PCS Fiber Optics Using an Imaging Technique. Chin. Phys. Lett. 29(11), 114217 (2012) Article Google Scholar
Wadsworth, W.J., Percival, R.M., Bouwmans, G., Knight, J.C., Birks, T.A., Hedley, T.D., Russell, P.S.J.: Very high numerical aperture fibers. IEEE Photonics Technol. Lett. 16(3), 843 (2004) Article Google Scholar
Issa, N.A.: High numerical aperture in multimode microstructured optical fibers. Appl. Optics 43(33), 6191 (2004) Article Google Scholar
Krishna, B., Chaturvedi, A., Mishra, N., Das, K.: Nanomechanical characterization of SU8/ZnO nanocomposite films for applications in energy-harvesting microsystems. J. Micromech. Microeng. 28(11), 115013 (2018) Article Google Scholar
Wang, X., Gao, W., Hung, J., Tam, W.Y.: Optical activities of large-area SU8 microspirals fabricated by multibeam holographic lithography. Appl. Optics 53(11), 2425 (2014) Article Google Scholar
Presby, H.M., Marcuse, D.: Refractive index and diameter determinations of step index optical fibers and preforms. Appl. Optics 13(12), 2882 (1974) Article Google Scholar
Dunklin, J.R., Forcherio, G.T., Berry, K.R., Roper, D.K.: Gold nanoparticle-polydimethylsiloxane thin films enhance thermoplasmonic dissipation by internal reflection. J. Phys. Chem. C 118(14), 7523 (2014) Article Google Scholar
Baumert, J., Hoffnagle, J.: Numerical method for the calculation of mode fields and propagation constants in optical waveguides. J. Lightwave Technol. 4(11), 1626 (1986) Article Google Scholar
Berenger, J.-P.: A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114(2), 185 (1994) ArticleMathSciNetMATH Google Scholar
Zhou, D., Huang, W.P., Xu, C.L., Fang, D.G., Chen, B.: The perfectly matched layer boundary condition for scalar finite-difference time-domain method. IEEE Photon. Technol. Lett. 13(5), 454 (2001) Article Google Scholar
Davidson, D.B., Botha, M.M.: Evaluation of a spherical PML for vector FEM applications. IEEE Trans. Antennas Propag. 55(2), 494 (2007) ArticleMathSciNetMATH Google Scholar
Selleri, S., Vincetti, L., Cucinotta, A., Zoboli, M.: Complex FEM modal solver of optical waveguides with PML boundary conditions. Opt. Quantum Electron. 33(4), 359 (2001) Article Google Scholar
Hastings, M.C., Chiu, B., Nippa, D.W.: Engineering the development of optical fiber sensors for adverse environments. Nucl. Eng. Des. 167(3), 239 (1997) Article Google Scholar
Huang, C., Wang, W., Wu, W., Ledoux, W.R.: Composite optical bend loss sensor for pressure and shear measurement. IEEE Sens. J. 7(11), 1554 (2007) Article Google Scholar
Jiguet, S., Judelewicz, M., Mischler, S., Bertch, A., Renaud, P.: Effect of filler behavior on nanocomposite SU8 photoresist for moving micro-parts. Microelectron. Eng. 83(4), 1273 (2006) Article Google Scholar
Viannie, L.R., Jayanth, G.R., Radhakrishna, V., Rajanna, K.: Fabrication and nonlinear thermomechanical analysis of SU8 thermal actuator. J. Microelectromech. Syst. 25(1), 125 (2016) Article Google Scholar
Tian, Y.T., Shang, X.B., Lancaster, M.J.: Fabrication of multilayered SU8 structure for terahertz waveguide with ultralow transmission loss. J. Micro/Nanolith. MEMS MOEMS 13(1), 013002 (2014) Article Google Scholar
Yang, M., Wu, X., Li, H., Cui, G., Bai, Z., Wang, L., Kraft, M., Liu, G., Wen, L.: A novel rare cell sorting microfluidic chip based on magnetic nanoparticle labels. J. Micromech. Microeng. 31(3), 034003 (2021) Article Google Scholar
Kumar, V., Sharma, N.N.: Synthesis of hydrophilic to superhydrophobic SU8 surfaces. J. Appl. Polym. Sci. 132(18), 41934 (2015) Article Google Scholar
Baibarac, M., Radu, A., Cristea, M., Cercel, R., Smaranda, I.: UV light effect on cationic photopolymerization of the SU8 photoresist and its composites with carbon nanotubes: new evidence shown by photoluminescence studies. J. Phys. Chem. C 124(13), 7467 (2020) Article Google Scholar
Nordstroem, M., Zauner, D.A., Boisen, A., Huebner, J.: Single-mode waveguides with SU-8 polymer core and cladding for MOEMS applications. J. Lightwave Technol. 25(5), 1284 (2007) Article Google Scholar
Shi, J.H., Wang, Z.P.: Designs of infrared nonpolarizing beam splitters with a Ag layer in a glass cube. Appl. Optics 47(14), 2619 (2008) Article Google Scholar
Ovchinnikov, Y.B.: A planar waveguide beam splitter. Opt. Commun. 220(4), 229 (2003) Article Google Scholar
Sibin, K.P., Selvakumar, N., Kumar, A., Dey, A., Sridhara, N., Shashikala, H.D., Sharma, A.K., Barshilia, H.C.: Design and development of ITO/Ag/ITO spectral beam splitter coating for photovoltaic-thermoelectric hybrid systems. Sol. Energy 141, 118 (2017) Article Google Scholar
Homes, C.C., Carr, G.L., Lobo, R.P.S.M., LaVeigne, J.D., Tanner, D.B.: Silicon beam splitter for far-infrared and terahertz spectroscopy. Appl. Opt. 46(32), 7884 (2007) Article Google Scholar
Tao, L., Deng, S., Gao, H., Lv, H., Wen, X., Li, M.: Experimental investigation of the dielectric constants of thin noble metallic films using a surface plasmon resonance sensor. Sensors 20(5), 1505 (2020) Article Google Scholar
Wang, Q., Zhang, Y., Chen, G., Chen, Z., Hee, H.I.: Assessment of Heart Rate and Respiratory Rate for Perioperative Infants Based on ELC Model. IEEE Sens. J. 21(12), 13685 (2021) Article Google Scholar