Study on the efficiency of nanosized magnetite and mixed ferrites in magnetic hyperthermia (original) (raw)
Access this article
Subscribe and save
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime Subscribe now
Buy Now
Price excludes VAT (USA)
Tax calculation will be finalised during checkout.
Instant access to the full article PDF.
References
- Jiang W, Yang HC, Yang SY, Horng HE, Hung JC, Chen YC, et al. Preparation and properties of superparamagnetic nanoparticles with narrow size distribution and biocompatible. J Magn Magn Mater. 2004;283(2):210–4.
Article Google Scholar - Hirazawa H, Kusamoto S, Aono H, Naohara T, Mori K, Hattori Y, et al. Preparation of fine Mg1−XCaXFe2O4 powder using reverse coprecipitation method for thermal coagulation therapy in an AC magnetic field. J Alloy Compd. 2008;461(1–2):467–73.
Article Google Scholar - Santra S, Tapec R, Theodoropoulou N, Dobson J, Hebard A, Tan W. Synthesis and characterization of silica-coated iron oxide nanoparticles in microemulsion: the effect of nonionic surfactants. Langmuir. 2001;17(10):2900–6.
Article Google Scholar - Li Z, Kawashita M, Kudo T-A, Kanetaka H. Sol–gel synthesis, characterization, and in vitro compatibility of iron nanoparticle-encapsulating silica microspheres for hyperthermia in cancer therapy. J Mater Sci Mater Med. 2012;23(10):2461–9.
Article Google Scholar - Hee Kim E, Sook Lee H, Kook Kwak B, Kim B-K. Synthesis of ferrofluid with magnetic nanoparticles by sonochemical method for MRI contrast agent. J Magn Magn Mater. 2005;289:328–30.
Article Google Scholar - Daou TJ, Pourroy G, Bégin-Colin S, Grenèche JM, Ulhaq-Bouillet C, Legaré P, et al. Hydrothermal synthesis of monodisperse magnetite nanoparticles. Chem Mater. 2006;18(18):4399–404.
Article Google Scholar - Iida H, Takayanagi K, Nakanishi T, Osaka T. Synthesis of Fe3O4 nanoparticles with various sizes and magnetic properties by controlled hydrolysis. J Colloid Interface Sci. 2007;314(1):274–80.
Article Google Scholar - Basak S, Chen D-R, Biswas P. Electrospray of ionic precursor solutions to synthesize iron oxide nanoparticles: modified scaling law. Chem Eng Sci. 2007;62(4):1263–8.
Article Google Scholar - Lin C-R, Chu Y-M, Wang S-C. Magnetic properties of magnetite nanoparticles prepared by mechanochemical reaction. Mater Lett. 2006;60(4):447–50.
Article Google Scholar - Figuerola A, Di Corato R, Manna L, Pellegrino T. From iron oxide nanoparticles towards advanced iron-based inorganic materials designed for biomedical applications. Pharmacol Res. 2010;62(2):126–43.
Article Google Scholar - Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, et al. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev. 2008;108(6):2064–110.
Article Google Scholar - Gupta A, Curtis AG. Surface modified superparamagnetic nanoparticles for drug delivery: interaction studies with human fibroblasts in culture. J Mater Sci Mater Med. 2004;15(4):493–6.
Article Google Scholar - Gong T, Li W, Chen H, Wang L, Shao S, Zhou S. Remotely actuated shape memory effect of electrospun composite nanofibers. Acta Biomater. 2012;8(3):1248–59.
Article Google Scholar - Abbasi AZ, Gutiérrez L, del Mercato LL, Herranz F, Chubykalo-Fesenko O, Veintemillas-Verdaguer S, et al. Magnetic capsules for nmr imaging: effect of magnetic nanoparticles spatial distribution and aggregation. J Phys Chem C. 2011;115(14):6257–64.
Article Google Scholar - Mahmoudi M, Hosseinkhani H, Hosseinkhani M, Boutry S, Simchi A, Journeay WS, et al. Magnetic resonance imaging tracking of stem cells in vivo using iron oxide nanoparticles as a tool for the advancement of clinical regenerative medicine. Chem Rev. 2010;111(2):253–80.
Article Google Scholar - Melancon MP, Lu W, Li C. Gold-based magneto/optical nanostructures: challenges for in vivo applications in cancer diagnostics and therapy. Mater Res Soc Bull. 2009;34(6):415–21. doi:10.1557/mrs2009.117.
Article Google Scholar - Laurent S, Dutz S, Häfeli UO, Mahmoudi M. Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles. Adv Colloid Interface Sci. 2011;166(1–2):8–23.
Google Scholar - Ma M, Wu Y, Zhou J, Sun Y, Zhang Y, Gu N. Size dependence of specific power absorption of Fe3O4 particles in AC magnetic field. J Magn Magn Mater. 2004;268(1–2):33–9.
Article Google Scholar - Lao LL, Ramanujan RV. Magnetic and hydrogel composite materials for hyperthermia applications. J Mater Sci Mater Med. 2004;15(10):1061–4.
Article Google Scholar - Xu J, Yang H, Fu W, Du K, Sui Y, Chen J, et al. Preparation and magnetic properties of magnetite nanoparticles by sol–gel method. J Magn Magn Mater. 2007;309(2):307–11.
Article Google Scholar - Maehara T, Konishi K, Kamimori T, Aono H, Hirazawa H, Naohara T, et al. Selection of ferrite powder for thermal coagulation therapy with alternating magnetic field. J Mater Sci. 2005;40(1):135–8.
Article Google Scholar - Sato K, Watanabe Y, Horiuchi A, Yukumi S, Doi T, Yoshida M, et al. Feasibility of new heating method of hepatic parenchyma using a sintered MgFe2O4 needle under an alternating magnetic field. J Surg Res. 2008;146(1):110–6.
Article Google Scholar - Naito K, Inaba H, Yagi H. Heat capacity measurements of MnXFe3−XO4. J Solid State Chem. 1981;36(1):28–35.
Article Google Scholar - Zhou Y, Tang Z, Shi C, Shi S, Qian Z, Zhou S. Polyethylenimine functionalized magnetic nanoparticles as a potential non-viral vector for gene delivery. J Mater Sci Mater Med. 2012;23(11):2697–708.
Article Google Scholar - Tomitaka A, Hirukawa A, Yamada T, Morishita S, Takemura Y. Biocompatibility of various ferrite nanoparticles evaluated by in vitro cytotoxicity assays using HeLa cells. J Magn Magn Mater. 2009;321(10):1482–4.
Article Google Scholar - Azadmanjiri J. Preparation of Mn–Zn ferrite nanoparticles from chemical sol–gel combustion method and the magnetic properties after sintering. J Non-Cryst Solids. 2007;353(44–46):4170–3.
Article Google Scholar - Yue Z, Zhou J, Wang X, Gui Z, Li L. Preparation and magnetic properties of titanium-substituted LiZn ferrites via a sol–gel auto-combustion process. J Eur Ceram Soc. 2003;23(1):189–93.
Article Google Scholar