Study on the efficiency of nanosized magnetite and mixed ferrites in magnetic hyperthermia (original) (raw)

Access this article

Log in via an institution

Subscribe and save

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Jiang W, Yang HC, Yang SY, Horng HE, Hung JC, Chen YC, et al. Preparation and properties of superparamagnetic nanoparticles with narrow size distribution and biocompatible. J Magn Magn Mater. 2004;283(2):210–4.
    Article Google Scholar
  2. Hirazawa H, Kusamoto S, Aono H, Naohara T, Mori K, Hattori Y, et al. Preparation of fine Mg1−XCaXFe2O4 powder using reverse coprecipitation method for thermal coagulation therapy in an AC magnetic field. J Alloy Compd. 2008;461(1–2):467–73.
    Article Google Scholar
  3. Santra S, Tapec R, Theodoropoulou N, Dobson J, Hebard A, Tan W. Synthesis and characterization of silica-coated iron oxide nanoparticles in microemulsion: the effect of nonionic surfactants. Langmuir. 2001;17(10):2900–6.
    Article Google Scholar
  4. Li Z, Kawashita M, Kudo T-A, Kanetaka H. Sol–gel synthesis, characterization, and in vitro compatibility of iron nanoparticle-encapsulating silica microspheres for hyperthermia in cancer therapy. J Mater Sci Mater Med. 2012;23(10):2461–9.
    Article Google Scholar
  5. Hee Kim E, Sook Lee H, Kook Kwak B, Kim B-K. Synthesis of ferrofluid with magnetic nanoparticles by sonochemical method for MRI contrast agent. J Magn Magn Mater. 2005;289:328–30.
    Article Google Scholar
  6. Daou TJ, Pourroy G, Bégin-Colin S, Grenèche JM, Ulhaq-Bouillet C, Legaré P, et al. Hydrothermal synthesis of monodisperse magnetite nanoparticles. Chem Mater. 2006;18(18):4399–404.
    Article Google Scholar
  7. Iida H, Takayanagi K, Nakanishi T, Osaka T. Synthesis of Fe3O4 nanoparticles with various sizes and magnetic properties by controlled hydrolysis. J Colloid Interface Sci. 2007;314(1):274–80.
    Article Google Scholar
  8. Basak S, Chen D-R, Biswas P. Electrospray of ionic precursor solutions to synthesize iron oxide nanoparticles: modified scaling law. Chem Eng Sci. 2007;62(4):1263–8.
    Article Google Scholar
  9. Lin C-R, Chu Y-M, Wang S-C. Magnetic properties of magnetite nanoparticles prepared by mechanochemical reaction. Mater Lett. 2006;60(4):447–50.
    Article Google Scholar
  10. Figuerola A, Di Corato R, Manna L, Pellegrino T. From iron oxide nanoparticles towards advanced iron-based inorganic materials designed for biomedical applications. Pharmacol Res. 2010;62(2):126–43.
    Article Google Scholar
  11. Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, et al. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev. 2008;108(6):2064–110.
    Article Google Scholar
  12. Gupta A, Curtis AG. Surface modified superparamagnetic nanoparticles for drug delivery: interaction studies with human fibroblasts in culture. J Mater Sci Mater Med. 2004;15(4):493–6.
    Article Google Scholar
  13. Gong T, Li W, Chen H, Wang L, Shao S, Zhou S. Remotely actuated shape memory effect of electrospun composite nanofibers. Acta Biomater. 2012;8(3):1248–59.
    Article Google Scholar
  14. Abbasi AZ, Gutiérrez L, del Mercato LL, Herranz F, Chubykalo-Fesenko O, Veintemillas-Verdaguer S, et al. Magnetic capsules for nmr imaging: effect of magnetic nanoparticles spatial distribution and aggregation. J Phys Chem C. 2011;115(14):6257–64.
    Article Google Scholar
  15. Mahmoudi M, Hosseinkhani H, Hosseinkhani M, Boutry S, Simchi A, Journeay WS, et al. Magnetic resonance imaging tracking of stem cells in vivo using iron oxide nanoparticles as a tool for the advancement of clinical regenerative medicine. Chem Rev. 2010;111(2):253–80.
    Article Google Scholar
  16. Melancon MP, Lu W, Li C. Gold-based magneto/optical nanostructures: challenges for in vivo applications in cancer diagnostics and therapy. Mater Res Soc Bull. 2009;34(6):415–21. doi:10.1557/mrs2009.117.
    Article Google Scholar
  17. Laurent S, Dutz S, Häfeli UO, Mahmoudi M. Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles. Adv Colloid Interface Sci. 2011;166(1–2):8–23.
    Google Scholar
  18. Ma M, Wu Y, Zhou J, Sun Y, Zhang Y, Gu N. Size dependence of specific power absorption of Fe3O4 particles in AC magnetic field. J Magn Magn Mater. 2004;268(1–2):33–9.
    Article Google Scholar
  19. Lao LL, Ramanujan RV. Magnetic and hydrogel composite materials for hyperthermia applications. J Mater Sci Mater Med. 2004;15(10):1061–4.
    Article Google Scholar
  20. Xu J, Yang H, Fu W, Du K, Sui Y, Chen J, et al. Preparation and magnetic properties of magnetite nanoparticles by sol–gel method. J Magn Magn Mater. 2007;309(2):307–11.
    Article Google Scholar
  21. Maehara T, Konishi K, Kamimori T, Aono H, Hirazawa H, Naohara T, et al. Selection of ferrite powder for thermal coagulation therapy with alternating magnetic field. J Mater Sci. 2005;40(1):135–8.
    Article Google Scholar
  22. Sato K, Watanabe Y, Horiuchi A, Yukumi S, Doi T, Yoshida M, et al. Feasibility of new heating method of hepatic parenchyma using a sintered MgFe2O4 needle under an alternating magnetic field. J Surg Res. 2008;146(1):110–6.
    Article Google Scholar
  23. Naito K, Inaba H, Yagi H. Heat capacity measurements of MnXFe3−XO4. J Solid State Chem. 1981;36(1):28–35.
    Article Google Scholar
  24. Zhou Y, Tang Z, Shi C, Shi S, Qian Z, Zhou S. Polyethylenimine functionalized magnetic nanoparticles as a potential non-viral vector for gene delivery. J Mater Sci Mater Med. 2012;23(11):2697–708.
    Article Google Scholar
  25. Tomitaka A, Hirukawa A, Yamada T, Morishita S, Takemura Y. Biocompatibility of various ferrite nanoparticles evaluated by in vitro cytotoxicity assays using HeLa cells. J Magn Magn Mater. 2009;321(10):1482–4.
    Article Google Scholar
  26. Azadmanjiri J. Preparation of Mn–Zn ferrite nanoparticles from chemical sol–gel combustion method and the magnetic properties after sintering. J Non-Cryst Solids. 2007;353(44–46):4170–3.
    Article Google Scholar
  27. Yue Z, Zhou J, Wang X, Gui Z, Li L. Preparation and magnetic properties of titanium-substituted LiZn ferrites via a sol–gel auto-combustion process. J Eur Ceram Soc. 2003;23(1):189–93.
    Article Google Scholar

Download references