Oftedal OT. Origin and evolution of the major constituents of milk. In: McSweeney PLH, Fox PF, editors. Advanced dairy chemistry: volume 1A: proteins. Basic aspects. Boston: Springer US; 2013. p. 1–42. Google Scholar
Benton MJ. Vertebrate paleontology. 3rd ed. Malden: Blackwell Publishing; 2005. Google Scholar
Kemp TS. The origin and evolution of mammals. New York: Oxford University Press; 2005. Google Scholar
Luo Z-X, Yuan CX, Meng Q-J, Ji Q. A Jurassic eutherian mammal and divergence of marsupials and placentals. Nature. 2011;476:442–5. ArticleCASPubMed Google Scholar
Clack JA. Gaining ground. The origin and evolution of tetrapods. 2nd ed. Bloomington: Indiana University Press; 2012. Google Scholar
Wells KD. The ecology and behavior of amphibians. Chicago: University of Chicago Press; 2007. Book Google Scholar
Oftedal OT. The origin of lactation as a water source for parchment-shelled eggs. J Mammary Gland Biol Neoplasia. 2002;7(3):253–66. ArticlePubMed Google Scholar
Oftedal OT. The mammary gland and its origin during synapsid evolution. J Mammary Gland Biol Neoplasia. 2002;7(3):225–52. ArticlePubMed Google Scholar
Dhouailly D. A new scenario for the evolutionary origin of hair, feather, and avian scales. J Anat. 2009;214(4):587–606. ArticlePubMed Google Scholar
Lemay DG, Lynn DJ, Martin WF, Neville MC, Casey TM, Rincon G, et al. The bovine lactation genome: insights into the evolution of mammalian milk. Genome Biol. 2009;10(4):R43. doi:10.1186/gb-2009-10-4-r43. ArticlePubMedCAS Google Scholar
Chapman RE. Hair, wool, quill, nail, claw, hoof, and horn. In: Bereiter-Hahn J, Matolstoy AG, Richards KS, editors. Biology of the integument. 2. Vertebrates. Berlin: Springer Verlag; 1986. p. 293–317. Chapter Google Scholar
Craigmyle MBL. The apocrine glands and the breast. New York: John Wiley and Sons; 1984. Google Scholar
Veltmaat JM, Mailleux AA, Thiery JP, Bellusci S. Mouse embryonic mammogenesis as a model for the molecular regulation of pattern formation. Differentiation. 2003;71:1–17. ArticleCASPubMed Google Scholar
Vorherr H. The breast. Morphology, physiology and lactation. New York: Academic; 1974. Google Scholar
Anderson R. Embryonic and fetal development of the mammary apparatus. In: Larson B, editor. Lactation: a comprehensive treatise. Volume IV. The mammary gland/ human lactation/ milk synthesis. New York: Academic; 1978. p. 3–40. Google Scholar
Griffiths M. Biology of the monotremes. New York: Academic; 1978. Google Scholar
Bresslau E. Die Entwickelung des Mammarapparates der Monotremen, Marsupialier und einiger Placentalier. Ein Beitrag zur Phylogenie der Saugethiere. I. Entwickelung und Ursprung des Mammarapparates von Echidna. Denskschr Med-Naturwiss Gesellsch Jena. 1907;7(5):455–518. plates 28–30. Google Scholar
Griffiths M, Elliott MA, Leckie RMC, Schoefl GI. Observations of the comparative anatomy and ultrastructure of mammary glands and on the fatty acids of the triglycerides in platypus and echidna milk fats. J Zool. 1973;169:255–79. ArticleCAS Google Scholar
Nilsson M, Churakov G, Sommer M, Tran N, Zemann A, Brosius J, et al. Tracking marsupial evolution using archaic genomic retroposon insertions. PLoS Biol. 2010;8:e1000436. doi:10.1371/journal.pbio.1000436. ArticlePubMedCAS Google Scholar
Hughes R, Hall L. Structural adaptations of the newborn marsupial. In: Tyndale-Biscoe CH, Janssens P, editors. The developing marsupial. Models for biomedical research. Berlin: Springer Verlag; 1988. p. 8–27. Chapter Google Scholar
Bresslau E. Die Entwickelung des Mammarapparates der Monotremen, Marsupialier und einiger Placentalier. III. Entwickelung des Mammarapparates der Marsupialier, Insectivoren, Nagathiere, Carnivoren und Wiederkäuer. Denskschr Med-Naturwiss Gesellsch Jena. 1912;7(5):647–874. plates 37–46. Google Scholar
Tyndale-Biscoe H, Renfree M. Reproductive physiology of marsupials. Cambridge: Cambridge University Press; 1987. Book Google Scholar
Green B, Merchant J. The composition of marsupial milk. In: Tyndale-Biscoe CH, Janssens PA, editors. The developing marsupial. Models for biomedical research. Berlin: Springer Verlag; 1988. p. 41–54. Chapter Google Scholar
Bresslau E. Beiträge zur Entwicklungsgeschichte der Mammarorgane bei den Beutelthieren. Z Morphol Anthropol. 1902;4:261–317. Google Scholar
Griffiths M, McIntosh D, Leckie RMC. The mammary glands of the red kangaroo with observations on the fatty acid components of the milk triglycerides. J Zool. 1972;166:265–75. ArticleCAS Google Scholar
Turner CW. The mammary gland. I. The anatomy of the udder of cattle and domestic animals. Columbia: Lucas Brothers; 1952. Google Scholar
Raynaud A. Morphogenesis of the mammary gland. In: Kon S, Cowie A, editors. Milk: the mammary gland and its secretion. New York: Academic; 1961. p. 3–46. Google Scholar
Rowson AR, Daniels KM, Ellis SE, Hovey RC. Growth and development of the mammary glands of livestock: a veritable barnyard of opportunities. Semin Cell Dev Biol. 2012;23:557–66. ArticlePubMed Google Scholar
Uehlinger P. Studien zur Entwicklung der Milchdrüse des Pferdes. 11. Beitrag zum Bau und zur Entwicklung von Hautorganen bei Saugetieren. Inaugural-Dissertation zur Erlangung der Doctor-Würde. Zurich: University of Zurich; 1922.
Profé O. Beiträge zur Ontogenie und Phylogenie der Mammarorgane. Anat Hefte. 1899;11:245–86. Google Scholar
Rein G. Untersuchungen über die embryonale Enwicklungsgeschichte der Milchdrüse. II. Vergleichend-anatomische Ergebnisse und Schlussresultate. Arch Mikrosk Anat. 1882;21:678–94. plate 30. Article Google Scholar
Hamburger C. Studien zur Entwickelung der Mammarorgane. I. Die Zitze von Pferd und Esel. Anat Anz. 1900;18:16–26. Google Scholar
Brouha M. Recherches sur les diverses phases du développement et de l’activité de la mamelle. Arch Biol. 1905;21:459–603. plates 18–20. Google Scholar
Dabelow A. Die Milchdrüse. In: von Möllendorff W, Bargmann W, editors. Handbuch der mikroskopischen Anatomie des Menschen. Dritter Band, Haut und Sinnesorgane. Dritter Teil, die Haut die Milchdrüse. Berlin: Springer Verlag; 1957. p. 277–485. Google Scholar
Jolicoeur F. Intrauterine breast development and the mammary myoepithelial lineage. J Mammary Gland Biol Neoplasia. 2005;10:199–210. ArticlePubMed Google Scholar
Ba G, Stein T. Human breast development. Semin Cell Dev Biol. 2012;23:567–73. Article Google Scholar
Howard BA, Gusterson BA. Human breast development. J Mammary Gland Biol Neoplasia. 2000;5:119–37. ArticleCASPubMed Google Scholar
Russo J, Russo IH. Development of the human mammary gland. In: Neville MC, Daniel CW, editors. The mammary gland. Development, regulation and function. New York: Plenum Press; 1987. p. 67–93. Google Scholar
Hassiotou F, Geddes D. Anatomy of the human mammary gland: current status of knowledge. Clin Anat. 2013;26:29–48. ArticlePubMed Google Scholar
Hughes ESR. Development of the mammary gland. Ann R Coll Surg Engl. 1950;6:99–119. CASPubMed Google Scholar
Broman I. Normale und abnorme Entwicklung des Menschen. Wiesbaden: Verlag von JF Bergmann; 1911. Google Scholar
Cooper AP. On the anatomy of the breast. London: Longman, Orme, Green, Brown and Longmans; 1840. Google Scholar
Love SM, Barsky SH. Anatomy of the nipple and breast ducts revisited. Cancer. 2004;101:1947–57. ArticlePubMed Google Scholar
Rusby J, Brachtel E, Michaelson J, Koerner F, Smith B. Breast duct anatomy in the human nipple: three-dimensional patterns and clinical implications. Breast Cancer Res Treat. 2007;106:171–9. ArticlePubMed Google Scholar
Going JJ. Lobar anatomy of human breast and its importance for breast cancer. In: Tot T, editor. Breast cancer. London: Springer London; 2011. p. 19–38. Google Scholar
Eggeling H. Über ein wichtiges Stadium in der Entwicklung der menschlichen Milchdrüse. Anat Anz. 1904;24:595–605. Google Scholar
Renfree MB, Papenfuss AT, Deakin JE, Lindsay J, Heider T, Belov K, et al. Genome sequence of an Australian kangaroo, Macropus eugenii, provides insight into the evolution of mammalian reproduction and development. Genome Biol. 2011;12:R81. doi:10.1186/gb-2011-12-8-r81. ArticlePubMed Google Scholar
Veltmaat JM, Van Veelen W, Thiery JP, Bellusci S. Identification of the mammary line in mouse by Wnt10b expression. Dev Dyn. 2004;229:349–56. ArticleCASPubMed Google Scholar
Rein G. Untersuchungen über die embryonale Entwicklungsgeschichte der Milchdrüse I. Arch Mikrosk Anat. 1882;20:431–501. plates 28–29. Article Google Scholar
Gosling L. The duration of lactation in feral coypus (Myocastor coypus). J Zool. 1980;191:461–74. Article Google Scholar
Koyama S, Wu H-J, Easwaran T, Thopady S, Foley F. The nipple: a simple intersection of mammary gland and integument, but focal point of organ function. J Mammary Gland Biol Neoplasia. 2013;18. doi:10.1007/s10911-013-9289-1.
Pearl R. On the correlation between the number of mammá of the dam and size of litter in mammals. I. Interracial correlation. Exp Biol Med. 1913;11:27–30. Article Google Scholar
Gilbert AN. Mammary number and litter size in Rodentia: the “one-half rule”. Proc Natl Acad Sci U S A. 1986;83:4828–30. ArticleCASPubMed Google Scholar
Sherman PW, Braude S, Jarvis JUM. Littter sizes and mammary numbers of naked mole-rats: breaking the one-half rule. J Mammal. 1999;80:720–33. Article Google Scholar
Derocher AW. Supernumerary mammae and nipples in the polar bear (Ursus maritimus). J Mammal. 1990;71:236–7. Article Google Scholar
Hsu MJ, Moore J, Lin JF, Agoramoorthy G. High incidence of supernumerary nipples and twins in Formosan macaques (Macaca cyclopis) at Mt. Longevity, Taiwan. Am J Primatol. 2000;52:199–205. ArticleCASPubMed Google Scholar
Bell AG. Saving the six-nippled breed. Dr Bell’s last contribution to science. J Hered. 1923;14:99–111. Google Scholar
Castle WE. The genetics of multi-nippled sheep. An analysis of the sheep breeding experiments of Dr. and Mrs. Alexander Graham Bell at Beinn Bhreagh, N.S. J Hered. 1924;15:75–85. Google Scholar
Morrow GE, Nicol SC. Maternal care in the Tasmanian echidna (Tachyglossus aculeatus setosus ). Aust J Zool. 2013. doi:10.1071/ZO12066. Google Scholar
Pires-daSilva A, Sommer RJ. The evolution of signalling pathways in animal development. Nat Rev Genet. 2003;4:39–49. ArticleCASPubMed Google Scholar
Widelitz R, Chuong C-M. Early events in skin appendage formation: induction of epithelial placodes and condensation of dermal mesenchyme. J Invest Dermatol Symp Proc. 1999;4:302–6. ArticleCAS Google Scholar
Olivera-Martinez I, Viallet J, Michon F, Pearton DJ, Dhouailly D. The different steps of skin formation in vertebrates. Int J Dev Biol. 2004;48:107–15. ArticleCASPubMed Google Scholar
McClellan HL, Miller SJ, Hartmann PE. Evolution of lactation: nutrition v. protection with special reference to five mammalian species. Nutr Res Rev. 2008;21:97–116. ArticleCASPubMed Google Scholar
Vorbach C, Capecchi MR, Penninger JM. Evolution of the mammary gland from the innate immune system? Bioessays. 2006;28:606–16. ArticleCASPubMed Google Scholar
Hoffmann JA, Kafatos FC, Janeway CA, Ezekowitz RA. Phylogenetic perspectives in innate immunity. Science. 1999;284:1313–8. ArticleCASPubMed Google Scholar
Fliniaux I, Viallet J, Dhouailly D. Signaling dynamics of feather tract formation from the chick somatopleure. Development. 2004;131:3955–66. ArticleCASPubMed Google Scholar
Fliniaux I, Viallet J, Dhouailly D, Jahoda C. Transformation of amnion epithelium into skin and hair follicles. Int Soc Diff. 2004;72:558–65. CAS Google Scholar
Prin F, Dhouailly D. How and when the regional competence of chick epidermis is established: feathers vs. scutate and reticulate scales, a problem en route to a solution. Int J Dev Biol. 2004;48:137–48. ArticleCASPubMed Google Scholar
Collomb E, Yang Y, Foriel S, Cadau S, Pearton DJ, Dhouailly D. The corneal epithelium and lens develop independently from a common pool of precursors. Dev Dyn. 2013. doi:10.1002/dvdy.23925. PubMed Google Scholar
Jussila M, Thesleff I. Signaling networks regulating tooth organogenesis and regeneration, and the specification of dental mesenchymal and epithelial cell lineages. Cold Spring Harb Perspect Biol. 2012; 4(4). doi:10.1101/cshperspect.a008425.
Veltmaat JM, Relaix F, Le LT, Kratochwil K, Sala FG, van Veelen W, et al. Gli3-mediated somitic FGF10 expression gradients are required for the induction and patterning of mammary epithelium along the embryonic axes. Development. 2006;133:2325–35. ArticleCASPubMed Google Scholar
Huh SH, Närhi K, Lindfors PH, Häärä O, Yang L, Ornitz DM, et al. Fgf20 governs formation of primary and secondary dermal condensations in developing hair follicles. Genes Dev. 2013;27(4):450–8. ArticleCASPubMed Google Scholar
Hens JR, Dann P, Zhang J, Harris S, Robinson G, Wysolmerski J. BMP4 and PTHrP interact to stimulate ductal outgrowth during embryonic mammary development and to inhibit hair follicle induction. Development. 2007;134:1221–30. ArticleCASPubMed Google Scholar
Propper AY. Relations epidermo-mesodermiques dans la differenciation de l’ebauche mammaire d’embryon de lapin. Ann Embryol Morphogen. 1968;2:151–60. Google Scholar
Kratochwil K. Organ specificity in mesenchymal induction demonstrated in the embryonic development of the mammary gland of the mouse. Dev Biol. 1969;20:46–71. ArticleCASPubMed Google Scholar
Dhouailly D. [Dermo-epidermal interactions between birds and mammals: differentiation of cutaneous appendages]. J Embryol Exp Morphol. 1973;30:587–603. CASPubMed Google Scholar
Dhouailly D. Formation of cutaneous appendages in dermo-epidermal recombinations between reptiles, birds and mammals. Wilhelm Roux's Arch Dev Biol. 1975;177:323–40. Article Google Scholar
Dhouailly D. Dermo-epidermal interactions during morphogenesis of cutaneous appendages in amniotes. Front Matrix Biol. 1977;4:86–121. CAS Google Scholar
Sick S, Reinker S, Timmer J, Schlake T. WNT and DKK determine hair follicle spacing through a reaction-diffusion mechanism. Science. 2006;314(5804):1447–50. ArticleCASPubMed Google Scholar
Chu EY, Hens J, Andl T, Kairo A, Yamaguchi TP, Brisken C, et al. Canonical WNT signaling promotes mammary placode development and is essential for initiation of mammary gland morphogenesis. Development. 2004;131:4819–29. ArticleCASPubMed Google Scholar
Mikkola ML, Thesleff I. Ectodysplasin signaling in development. Cytokine Growth Factor Rev. 2003;14:211–24. ArticleCASPubMed Google Scholar
Harris M, Rohner N, Schwartz H, Perathoner H, Konstantinidis P, Nusslein-Volhard C. Zebrafish eda and edar mutants reveal conserved and ancestral roles of Ectodysplasin signaling in vertebrates. PLoS Genet. 2008;4. doi:10.1371/journal.pgen.1000206.
Huh S, Närhi K, Lindfors P, Häärä O, Yang L, Ornitz DM, et al. Fgf20 governs formation of primary and secondary dermal condensations in developing hair follicles. Gene Dev. 2013;27:450–8. ArticleCASPubMed Google Scholar
St-Jacques B, Dassule HR, Karavanova I, Botchkarev VA, Li J, Danielian PS, et al. Sonic hedgehog signaling is essential for hair development. Curr Biol. 1998;8:1058–68. ArticleCASPubMed Google Scholar
Pispa J, Pummila M, Barker PA, Thesleff I, Mikkola ML. Edar and Troy signalling pathways act redundantly to regulate initiation of hair follicle development. Hum Mol Genet. 2008;17:3380–91. ArticleCASPubMed Google Scholar
Lewis MT, Veltmaat JM. Next stop, the twilight zone: hedgehog network regulation of mammary gland development. J Mammary Gland Biol Neoplasia. 2004;9:165–81. ArticlePubMed Google Scholar
Gallego M, Beachy P, Hennighausen L, Robinson G. Differential requirements for Shh in mammary tissue and hair follicle morphogenesis. Dev Biol. 2002;249:131–9. ArticleCASPubMed Google Scholar
Michno K, Boras-Granic K, Mill P, Hui CC, Hamel PA. Shh expression is required for embryonic hair follicle but not mammary gland development. Dev Biol. 2003;264:153–65. ArticleCASPubMed Google Scholar
Hatsell SJ, Cowin P. Gli3-mediated repression of Hedgehog targets is required for normal mammary development. Development. 2006;133:3661–70. ArticleCASPubMed Google Scholar
Gritli-Linde A, Hallberg K, Harfe BD, Reyahi A, Kannius-Janson M, Nilsson J, et al. Abnormal hair development and apparent follicular transformation to mammary gland in the absence of hedgehog signaling. Dev Cell. 2007;12(1):99–112. ArticleCASPubMed Google Scholar
Chiang C, Swan R, Grachtchouk M, Bolinger M, Litingtung Y, Robertson E, et al. Essential role for Sonic hedgehog during hair follicle morphogenesis. Dev Biol. 1999;205:1–9. ArticleCASPubMed Google Scholar
Niemann C, Unden A, Lyle S, Zaouboulis C, Toftgård R, Watt F. Indian hedgehog and β-catenin signaling: role in the sebaceous lineage of normal and neoplastic mammalian epidermis. Proc Natl Acad Sci U S A. 2003;30(Supplement 1):11873–80. ArticleCAS Google Scholar
Hardy M. Glandular metaplasia of hair follicles and other responses to vitamin A excess in cultures of rodent skin. J Embryol Exp Morphol. 1968;19:157–80. CASPubMed Google Scholar
Viallet J, Dhouailly D. Retinoic acid and mouse skin morphogenesis. II. Role of epidermal competence in hair glandular metaplasia. Dev Biol. 1994;166:277–88. ArticleCASPubMed Google Scholar
Cho K, Kwon H, Shin J, Lee J, Cho S. Retinoic acid signaling and the initiation of mammary gland development. Dev Biol. 2012;365:259–66. ArticleCASPubMed Google Scholar
Parsa S, Ramasamy SK, De Langhe S, Gupte VV, Haigh JJ, Medina D, et al. Terminal end bud maintenance in mammary gland is dependent upon FGFR2b signaling. Dev Biol. 2008;317:121–31. ArticleCASPubMed Google Scholar
Unbekandt M, del Moral P, Sala FG, Bellusci S, Warburton D, Fleury V. Tracheal occlusion increases the rate of epithelial branching of embryonic mouse lung via the FGF10-FGFR2b-Sprouty2 pathway. Mech Dev. 2008;125:314–24. ArticleCASPubMed Google Scholar
Lo T, Yusoff P, Fong C, Guo K, McCaw B, Phillips W, et al. The ras/mitogen-activated protein kinase pathway inhibitor and likely tumor suppressor proteins, Sprouty 1 and Sprouty 2 are deregulated in breast cancer. Cancer Res. 2004;64:6127–36. ArticleCASPubMed Google Scholar
Kramer S, Okabe M, Hacohen N, Krasnow M, Hiromi Y. Sprouty: a common antagonist of FGF and EGF signaling pathways in Drosophila. Development. 1999;126:2515–25. CASPubMed Google Scholar
Yue Z, Jiang T, Wu P, Widelitz R, Chuong C-M. Sprouty/FGF signaling regulates the proximal-distal feather morphology and the size of dermal papillae. Dev Biol. 2012;372:45–54. ArticleCASPubMed Google Scholar
Foley J, Dann P, Hong J, Cosgrove J, Dreyer B, Rimm D, et al. Parathyroid hormone-related protein maintains mammary epithelial fate and triggers nipple skin differentiation during embryonic breast development. Development. 2001;128:513–25. CASPubMed Google Scholar
Wysolmerski JJ, Cormier S, Philbrick WM, Dann P, Zhang JP, Roume J, et al. Absence of functional type 1 parathyroid hormone (PTH)/PTH-related protein receptors in humans is associated with abnormal breast development and tooth impaction. J Clin Endocrinol Metab. 2001;86(4):1788–94. ArticleCASPubMed Google Scholar
Mayer JA, Foley J, De La Cruz D, Chuong C-M, Widelitz R. Conversion of the nipple to hair-bearing epithelia by lowering bone morphogenetic protein pathway activity at the dermal-epidermal interface. Am J Pathol. 2008;173:1339–48. ArticleCASPubMed Google Scholar
Wysolmerski JJ. Parathyroid hormone-related protein: an update. J Clin Endocrinol Metab. 2012;97:2947–56. ArticleCASPubMed Google Scholar
Debiais-Thibaud M, Oulion S, Bourrat F, Laurenti P, Casane D, Borday-Birraux V. The homology of odontodes in gnathostomes: insights from Dlx gene expression in the dogfish, Scyliorhinus canicula. BMC Evol Biol. 2011;11:307. doi:10.1186/1471-2148-11-307. ArticleCASPubMed Google Scholar
Kawasaki K, Lafont A, Sire J. The evolution of milk casein genes from tooth genes before the origin of mammals. Mol Biol Evol. 2011;28:2053–61. ArticleCASPubMed Google Scholar
Witzmann F, Scholz H, Mueller J, Kardjilov N. Sculpture and vascularization of dermal bones and implications for the physiology of basal tetrapods. Zool J Linnean Soc. 2010;160:302–40. Article Google Scholar
Wu P, Hou L, Plikus M, Hughes M, Scehnet J, Suksaweang S, et al. Evo-Devo of amniote integuments and appendages. Int J Dev Biol. 2004;48:249–70. ArticleCASPubMed Google Scholar
Alibardi L. Perspectives on hair evolution based on some comparative studies on vertebrate cornification. J Exp Zool Part B. 2012;318:325–43. ArticleCAS Google Scholar
Lefèvre C, Sharp J, Nicholas K. Evolution of lactation: ancient origin and extreme adaptations of the lactation system. Annu Rev Genomics Hum Genet. 2010;11:219–38. ArticlePubMedCAS Google Scholar
Widelitz RB, Veltmaat JM, Mayer JA, Foley J, Chuong CM. Mammary glands and feathers: comparing two skin appendages which help define novel classes during vertebrate evolution. Semin Cell Dev Biol. 2007;18(2):255–66. ArticleCASPubMed Google Scholar