The complete mitochondrial genomes of three cestode species of Taenia infecting animals and humans (original) (raw)

Abstract

Mitochondrial (mt) genome sequences provide useful markers for investigating population genetic structures, systematics and phylogenetics of organisms. Although Taenia multiceps, T. hydatigena, and T. taeniaeformis are common taeniid tapeworms of ruminants, pigs, dogs, or cats, causing significant economic losses, no published study on their mt genomes is available. The complete mt genomes of T. multiceps, T. hydatigena, and T. taeniaeformis were amplified in two overlapping fragments and then sequenced. The sizes of the entire mt genome were 13700 bp for T. multiceps, 13489 bp for T. hydatigena, and 13647 bp for T. taeniaeformis. Each of the three genomes contains 36 genes, consisting of 12 genes for proteins, 2 genes for rRNA, and 22 genes for tRNA, which are the same as the mt genomes of all other cestode species studied to date. All genes are transcribed in the same direction and have a nucleotide composition high in A and T. The contents of A+T of the complete genomes are 71.3% for T. multiceps, 70.8% for T. hydatigena, and 73.0% for T. taeniaeformis. The AT bias had a significant effect on both the codon usage pattern and amino acid composition of proteins. T. multiceps and T. hydatigena had two noncoding regions, but T. taeniaeformis had only one. Phylogenetic analyses based on concatenated amino acid sequences of 12 protein-coding genes revealed that T. multiceps, T. hydatigena, and T. taeniaeformis were more closely related to the other members of the Taenia genus, consistent with results of previous morphological and molecular studies. The present study determined the complete mt genome sequences for three Taenia species of animal and human health significance, providing useful markers for studying the systematics, population genetics, and molecular epidemiology of these cestode parasites of animals and humans.

Access this article

Log in via an institution

Subscribe and save

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

_atp_6 and _atp_8:

ATPase subunits 6 and 8

bp:

Base pair (s)

_cox_1-3:

Cytochrome c oxidase subunits I–III

_cyt_b:

Cytochrome b

mtDNA:

Mitochondrial DNA

_nad_1–6 and _nad_4L:

NADH dehydrogenase subunits 1–6 and 4L

_rrn_S and _rrn_L:

Small and large subunits ribosomal RNA

tRNA:

Transfer RNA

References

  1. Boore JL (1999) Animal mitochondrial genomes. Nucleic Acids Res 27:1767–1780
    Article PubMed CAS Google Scholar
  2. Yu Z, Wei Z, Kong X et al (2008) Complete mitochondrial DNA sequence of oyster _Crassostrea hongkongensis_-a case of “Tandem duplication-random loss” for genome rearrangement in Crassostrea? BMC Genomics 9:e477
    Article Google Scholar
  3. Wolstenholme DR (1992) Animal mitochondrial DNA, structure and evolution. Int Rev Cytol 141:173–216
    Article PubMed CAS Google Scholar
  4. Hua J, Li M, Dong P et al (2009) The mitochondrial genome of Protohermes concolorus Yang et Yang 1988 (Insecta: Megaloptera: Corydalidae). Mol Biol Rep 36:1757–1765
    Article PubMed CAS Google Scholar
  5. Zhang X, Yue B, Jiang W et al (2009) The complete mitochondrial genome of rock carp Procypris rabaudi (Cypriniformes: Cyprinidae) and phylogenetic implications. Mol Biol Rep 36:981–991
    Article PubMed CAS Google Scholar
  6. Ki JS, Hwang DS, Park TJ et al (2010) A comparative analysis of the complete mitochondrial genome of the Eurasian otter Lutra lutra (Carnivora; Mustelidae). Mol Biol Rep 37:1943–1955
    Article PubMed CAS Google Scholar
  7. Shen X, Wang H, Ren J et al (2010) The mitochondrial genome of Euphausia superba (Prydz Bay) (Crustacea: Malacostraca: Euphausiacea) reveals a novel gene arrangement and potential molecular markers. Mol Biol Rep 37:771–784
    Article PubMed CAS Google Scholar
  8. Wei SJ, Tang P, Zheng LH et al (2010) The complete mitochondrial genome of Evania appendigaster (Hymenoptera: Evaniidae) has low A + T content and a long intergenic spacer between atp8 and atp6. Mol Biol Rep 37:1931–1942
    Article PubMed CAS Google Scholar
  9. Gauci C, Vural G, Oncel T et al (2008) Vaccination with recombinant oncosphere antigens reduces the susceptibility of sheep to infection with Taenia multiceps. Int J Parasitol 38:1041–1050
    Article PubMed CAS Google Scholar
  10. Sissay MM, Uggla A, Waller PJ (2008) Prevalence and seasonal incidence of larval and adult cestode infections of sheep and goats in eastern Ethiopia. Trop Anim Health Prod 40:387–394
    Article PubMed Google Scholar
  11. Ngowi HA, Kassuku AA, Maeda GE et al (2004) A slaughter slab survey for extra-intestinal porcine helminth infections in Northern Tanzania. Trop Anim Health Prod 36:335–340
    Article PubMed CAS Google Scholar
  12. Dalimi A, Sattari A, Motamedi G (2006) A study on intestinal helminthes of dogs, foxes and jackals in the western part of Iran. Vet Parasitol 142:129–133
    Article PubMed CAS Google Scholar
  13. Wang CR, Qiu JH, Zhao JP et al (2006) Prevalence of helminthes in adult dogs in Heilongjiang Province, the People’s Republic of China. Parasitol Res 99:627–630
    Article PubMed CAS Google Scholar
  14. El-Shehabi FS, Abdel-Hafez SK, Kamhawi SA (1999) Prevalence of intestinal helminths of dogs and foxes from Jordan. Parasitol Res 85:928–934
    Article PubMed CAS Google Scholar
  15. Dai RS, Li ZY, Li F et al (2009) Severe infection of adult dogs with helminths in Hunan Province, China poses significant public health concerns. Vet Parasitol 160:348–350
    Article PubMed CAS Google Scholar
  16. Benifla M, Barrelly R, Shelef I et al (2007) Huge hemispheric intraparenchymal cyst caused by Taenia multiceps in a child. Case report. J Neurosurg 107:S511–S514
    Google Scholar
  17. Ekanayake S, Warnasuriya ND, Samarakoon PS et al (1999) An unusual ‘infection’ of a child in Sri Lanka, with Taenia taeniaeformis of the cat. Ann Trop Med Parasitol 93:869–873
    Article PubMed CAS Google Scholar
  18. Nakao M, Abmed D, Yamasaki H et al (2007) Mitochondrial genomes of the human broad tapeworms Diphyllobothrium latum and Diphyllobothrium nihonkaiense (Cestoda: Diphyllobothriidae). Parasitol Res 101:233–236
    Article PubMed Google Scholar
  19. von Nickisch-Rosenegk M, Brown WM, Boore JL (2001) Complete sequence of the mitochondrial genome of the tapeworm Hymenolepis diminuta: gene arrangements indicate that Platyhelminths are Eutrochozoans. Mol Biol Evol 18:721–730
    Google Scholar
  20. Nakao M, McManus DP, Schantz PM et al (2007) A molecular phylogeny of the genus Echinococcus inferred from complete mitochondrial genomes. Parasitology 134:713–722
    Article PubMed CAS Google Scholar
  21. Jeon HK, Eom KS (2006) Taenia asiatica and Taenia saginata: Genetic divergence estimated from their mitochondrial genomes. Exp Parasitol 113:58–61
    Article PubMed CAS Google Scholar
  22. Nakao M, Sako Y, Ito A (2003) The mitochondrial genome of the tapeworm Taenia solium: a finding of the abbreviated stop codon U. J Parasitol 89:633–635
    Article PubMed CAS Google Scholar
  23. Yang YR, Rosenzvit MC, Zhang LH et al (2005) Molecular study of Echinococcus in west-central China. Parasitology 131:547–555
    Article PubMed CAS Google Scholar
  24. Nakao M, Yokoyama N, Sako Y et al (2002) The complete mitochondrial DNA sequence of the cestode Echinococcus multilocularis (Cyclophyllidea: Taeniidae). Mitochondrion 1:497–509
    Article PubMed CAS Google Scholar
  25. Jeon H-K, Kim K-H, Eom KS (2007) Complete sequence of the mitochondrial genome of Taenia saginata: comparison with T. solium and T. asiatica. Parasitol Int 56:243–246
    Article PubMed CAS Google Scholar
  26. Schmidt GD (1986) Handbook of tapeworm identification. CRC Press, Boca Raton, FL
    Google Scholar
  27. Gasser RB, Zhu X, Woods W (1999) Genotyping Taenia tapeworms by single-strand conformation polymorphism of mitochondrial DNA. Electrophoresis 20:2834–2837
    Article PubMed CAS Google Scholar
  28. Gasser RB, Zhu X, McManus DP (1999) NADH dehydrogenase subunit 1 and cytochrome c oxidase subunit I sequences compared for members of the genus Taenia (Cestoda). Int J Parasitol 29:1965–1970
    Article PubMed CAS Google Scholar
  29. Bowles J, Blair D, McManus DP (1992) Genetic variants within the genus Echinococcus identified by mitochondrial DNA sequencing. Mol Biochem Parasitol 54:165–173
    Article PubMed CAS Google Scholar
  30. Thompson JD, Gibson TJ, Plewniak F et al (1997) The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882
    Article Google Scholar
  31. Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955–964
    Article PubMed CAS Google Scholar
  32. Felsenstein J (1995) PHYLIP (Phylogeny Inference Package), version 3. 57c. Department of Genetics, University of Washington, Seattle
    Google Scholar
  33. Tamura K, Dudley J, Nei M et al (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599
    Article PubMed CAS Google Scholar
  34. Strimmer K, Haeseler AV (1996) Quartet puzzling: A quartet maximum likelihood method for reconstructing tree topologies. Mol Biol Evol 13:964–969
    CAS Google Scholar
  35. Asakawa S, Himeno H, Miura K et al (1995) Nucleotide sequence and gene organization of the starfish Asterina pectinifera mitochondrial genome. Genetics 140:1047–1060
    PubMed CAS Google Scholar
  36. Mayta H, Talley A, Gilman RH et al (2000) Differentiating Taenia solium and Taenia saginata infections by simple Hematoxylin-Eosin staining and PCR-restriction enzyme analysis. J Clin Microbiol 38:133–137
    PubMed CAS Google Scholar
  37. Chapman A, Vallejo V, Mossie KG et al (1995) Isolation and characterization of species-specific DNA probes from Taenia solium and Taenia saginata and their use in an egg detection assay. J Clin Microbiol 33:1283–1288
    PubMed CAS Google Scholar
  38. Xiao N, Qiu J, Nakao M et al (2005) Echinococcus shiquicus n. sp., a taeniid cestode from Tibetan fox and plateau pika in China. Int J Parasitol 35:693–701
    Article PubMed CAS Google Scholar
  39. Okamoto M, Nakao M, Blair D et al (2010) Evidence of hybridization between Taenia saginata and Taenia asiatica. Parasitol Int 59:70–74
    Article PubMed CAS Google Scholar

Download references

Author information

Authors and Affiliations

  1. State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, Lanzhou, Gansu Province, 730046, People’s Republic of China
    Guo-Hua Liu, Hui-Qun Song & Xing-Quan Zhu
  2. Laboratory of Parasitology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, 510642, People’s Republic of China
    Rui-Qing Lin & Zi-Guo Yuan
  3. Department of Infectious Diseases, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510630, People’s Republic of China
    Kou-Xing Zhang
  4. Department of Veterinary Medicine, Agricultural College, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, People’s Republic of China
    Ming-Wei Li
  5. Laboratory of Parasitology, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, 410128, People’s Republic of China
    Guo-Hua Liu, Wei Liu & Yi Liu
  6. College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi, 712100, People’s Republic of China
    Guang-Hui Zhao

Authors

  1. Guo-Hua Liu
  2. Rui-Qing Lin
  3. Ming-Wei Li
  4. Wei Liu
  5. Yi Liu
  6. Zi-Guo Yuan
  7. Hui-Qun Song
  8. Guang-Hui Zhao
  9. Kou-Xing Zhang
  10. Xing-Quan Zhu

Corresponding authors

Correspondence toKou-Xing Zhang or Xing-Quan Zhu.

Electronic supplementary material

Rights and permissions

About this article

Cite this article

Liu, GH., Lin, RQ., Li, MW. et al. The complete mitochondrial genomes of three cestode species of Taenia infecting animals and humans.Mol Biol Rep 38, 2249–2256 (2011). https://doi.org/10.1007/s11033-010-0355-0

Download citation

Keywords