Association of Gene Polymorphisms DRD3 rs6280, COMT rs4680, and HTR2A rs7322347 with Schizophrenia (original) (raw)

References

  1. A. O. Kibitov, A. A. Kurylev, V. M. Brodyanskii, et al., “Combination of dopamine receptor type 2 (DRD2-141C INS/DEL) and protein kinase PKK2 (DRD2/ANKK1 TAQ1A) gene polymorphisms reduces the genetic risk of developing paranoid schizophrenia,” Sotsial. Klin. Psikhiatr., 27, No. 3, 63–72 (2017).
    Google Scholar
  2. Schizophrenia Working Group of the Psychiatric Genomics Consortium, “Biological insights from 108 schizophrenia-associated genetic loci,” Nature, 511, 421–427 (2014), https://doi.org/10.1038/nature13595.
    Article CAS PubMed Central Google Scholar
  3. M. J. Owen, A. Sawa, and P. B. Mortensen, “Schizophrenia,” Lancet, 388, No. 10039, 86–97 (2016), https://doi.org/10.1016/S0140-6736(15)01121-6.
    Article PubMed PubMed Central Google Scholar
  4. Psychiatric GWAS Consortium Coordinating Committee, S. Cichon, N. Craddock, M. Daly, et al., “Genomewide association studies: history, rationale, and prospects for psychiatric disorders,” Am. J. Psychiatry, 166, No. 5, 540–556 (2009), https://doi.org/10.1176/appi.ajp.2008.08091354.
    Article Google Scholar
  5. E. C. Johnson, R. Border, W. E. Melroy-Greif, et al., “No evidence that schizophrenia candidate genes are more associated with schizophrenia than noncandidate genes,” Biol. Psychiatry, 82, No. 10, 702–708 (2017), https://doi.org/10.1016/j.biopsych.2017.06.033.
    Article CAS PubMed PubMed Central Google Scholar
  6. A. M. Reznik, G. P. Kostyuk, and A. N. Khannanova, “Vulnerability for schizophrenia on the basis of molecular genetics investigations,” Sotsial. Klin. Psikhiatr., 26, No. 3, 101–108 (2016).
    Google Scholar
  7. N. C. Allen, S. Bagade, M. B. McQueen, et al., “Systematic meta- analyses and field synopsis of genetic association studies in schizophrenia: the SzGene database,” Nat. Genet., 40, No. 7, 827–834 (2008), https://doi.org/10.1038/ng.171.
    Article CAS PubMed Google Scholar
  8. A. L. Collins, Y. Kim, P. Sklar, et al., “Hypothesis-driven candidate genes for schizophrenia compared to genome-wide association results,” Psychol. Med., 42, No. 3, 607–616 (2012), https://doi.org/10.1017/S0033291711001607.
    Article CAS PubMed Google Scholar
  9. L. A. Antonucci, G. Pergola, A. Pigoni, et al., “A Pattern of cognitive deficits stratified for genetic and environmental risk reliably classifies patients with schizophrenia from healthy control subjects,” Biol. Psychiatry, 87, No. 8, 697–707 (2020), https://doi.org/10.1016/j.biopsych.2019.11.007.
    Article CAS PubMed Google Scholar
  10. W. A. Haynes, F. Vallania, C. Liu, et al., “ Empowering multi-cohort gene expression analysis to increase reproducibility,” bioArxiv (2016), https://doi.org/10.1101/071514.
  11. T. Miyakawa, “No raw data, no science: another possible source of the reproducibility crisis,” Mol. Brain, 13, No. 1, 24 (2020), https://doi.org/10.1186/s13041-020-0552-2.
  12. S. Kapur, A. G. Phillips, and T. R. Insel, “Why has it taken so long for biological psychiatry to develop clinical tests and what to do about it?” Mol. Psychiatry, 17, No. 12, 1174–1179 (2012), https://doi.org/10.1038/mp.2012.105.
    Article CAS PubMed Google Scholar
  13. A. Morozova, K. Pavlov, Y. Zorkina, et al., “Association of rs4680 COMT, rs6280 DRD3, and rs7322347 5HT2A with clinical features of youth-onset schizophrenia,” Front. Psychiatry, 10, 830 (2019), https://doi.org/10.3389/fpsyt.2019.00830.
    Article PubMed PubMed Central Google Scholar
  14. J. P. Ioannidis, E. E. Ntzani, T. A. Trikalinos, and D. G. Contopoulos-Ioannidis, “Replication validity of genetic association studies,” Nat. Genet., 29, No. 3, 306–309 (2001), https://doi.org/10.1038/ng749.
    Article CAS PubMed Google Scholar
  15. X. Qi, J. Xuan, J. Xing, et al., “No association between dopamine D3 receptor gene Ser9Gly polymorphism (rs6280) and risk of schizophrenia: an updated meta-analysis,” Neuropsychiatr. Dis. Treat., 13, 2855–2865 (2017), https://doi.org/10.2147/ndt.s152784.
    Article CAS PubMed PubMed Central Google Scholar
  16. M. Cariaso and G. Lennon, “SNPedia: a wiki supporting personal genome annotation, interpretation and analysis,” Nucleic Acids Res., 40, Iss. D1, D1308–1312 (2012), https://doi.org/10.1093/nar/gkr798.
  17. J.Savitz, C. A. Hodgkinson, C. Martin-Soelch, et al., “The functional DRD3 Ser9Gly polymorphism (rs6280) is pleiotropic, affecting reward as well as movement,” PLoS One, 8, No. 1, e54108 (2013), https://doi.org/10.1371/journal.pone.0054108.
  18. J. Han, Y. Li, and X. Wang, “Potential link between genetic polymorphisms of catechol-O-methyltransferase and dopamine receptors and treatment efficacy of risperidone on schizophrenia,” Neuropsychiatr. Dis. Treat., 13, 2935–2943 (2017), https://doi.org/10.2147/NDT.S148824.
    Article CAS PubMed PubMed Central Google Scholar
  19. T. B. González-Castro, Y. Hernández-Díaz, I. E. Juárez-Rojop, et al., “The role of a catechol-O-methyltransferase (COMT) Val158Met genetic polymorphism in schizophrenia: A systematic review and updated meta-analysis on 32,816 subjects,” Neuromolecular Med., 18, 216–231 (2016), https://doi.org/10.1007/s12017-016-8392-z.
    Article CAS PubMed Google Scholar
  20. M. B. First, J. B. W. Williams, R. S. Karg, et al., Structured Clinical Interview for DSM-5 Disorders, American Psychiatric Publishing, Arlington, VA, USA, (2016), 1st ed.
  21. G. Warnes, G. Gorjanc, F. Leisch, et al., Genetics: Population Genetics (2019), https://CRAN.R-project.org/package=genetics.
  22. A. S. Foulkes, Applied Statistical Genetics with R: For Population-Based Association Studies, Springer, New York, USA (2009), https://doi.org/10.1007/978-0-387-89554-3.
  23. X. Robin, N. Turck, A. Hainard, et al., “pROC: an open-source package for R and S+ to analyze and compare ROC curves,” BMC Bioinformatics, 12, No. 1, 77 (2011), https://doi.org/10.1186/1471-2105-12-77.
  24. T. Tjur, “Coefficients of determination in logistic regression models – A new proposal: the coefficient of discrimination,” Am. Statistician, 63, No. 4, 366–372 (2009), https://doi.org/10.1198/tast.2009.08210.
    Article Google Scholar
  25. R Core, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, (2020), https://cran.r-project.org.
  26. J. Lochman, V. J. Balcar, F. Šťastný, et al., “Preliminary evidence for association between schizophrenia and polymorphisms in the regulatory Regions of the ADRA2A, DRD3 and SNAP-25 Genes,” Psychiatry Res., 205, No. 1, 7–12 (2013), https://doi.org/10.1016/j.psychres.2012.08.003.
    Article CAS PubMed Google Scholar
  27. K. Utsunomiya, T. Shinkai, V. De Luca, et al., “Genetic association between the dopamine D3 gene polymorphism (Ser9Gly) and schizophrenia in Japanese populations: Evidence from a case – control study and meta-analysis,” Neurosci. Lett., 444, No. 2, 161–165 (2008), https://doi.org/10.1016/j.neulet.2008.08.005.
    Article CAS PubMed Google Scholar
  28. X.-N. Li, J.-L. Zheng, X.-H. Wei, et al., “No association between the Ser9Gly polymorphism of the dopamine receptor D3 gene and schizophrenia: a meta-analysis of family-based association studies,” BMC Med. Genet., 21, No. 1, 85 (2020), https://doi.org/10.1186/s12881-020-01018-w.
  29. K. Maria, T. Charalampos, D. Vassilakopoulou, et al., “Frequency distribution of COMT polymorphisms in Greek patients with schizophrenia and controls: A study of SNPs rs737865, rs4680, and rs165599,” ISRN Psychiatry, 2012, e651613 (2012), https://doi.org/10.5402/2012/651613.
  30. T. Okochi, M. Ikeda, T. Kishi, et al., “Meta-analysis of association between genetic variants in COMT and schizophrenia: An update,” Schizophr. Res., 110, No. 1, 140–148 (2009), https://doi.org/10.1016/j.schres.2009.02.019.
    Article PubMed Google Scholar
  31. K. Oishi, T. Niitsu, N. Kanahara, et al., “Genetic risks of schizophrenia identified in a matched case-control study,” Eur. Arch. Psychiatry Clin. Neurosci., 271, No. 4, 775–781 (2021), https://doi.org/10.1007/s00406-020-01158-3.
    Article PubMed Google Scholar

Download references