Keep RF, Jones HC (1990) A morphometric study on the development of the lateral ventricle choroid plexus, choroid plexus capillaries and ventricular ependyma in the rat. Brain Res Dev Brain Res 56:47–53. doi:10.1016/0165-3806(90)90163-S ArticleCASPubMed Google Scholar
Banizs B, Pike MM, Millican CL et al (2005) Dysfunctional cilia lead to altered ependyma and choroid plexus function, and result in the formation of hydrocephalus. Development 132:5329–5339. doi:10.1242/dev.02153 ArticleCASPubMed Google Scholar
Ames A, Higashi K, Nesbett FB (1965) Effects of Pco2 acetazolamide and ouabain on volume and composition of choroid-plexus fluid. J Physiol 181:516–524 ArticlePubMed CentralPubMed Google Scholar
Johanson CE (2008) Choroid plexus–Cerebrospinal fluid circulatory dynamics: impact on brain growth, metabolism, and repair. Neurosci, Med Google Scholar
Davson H, Segal MB (1970) The effects of some inhibitors and accelerators of sodium transport on the turnover of 22Na in the cerebrospinal fluid and the brain. J Physiol 209:131–153 ArticlePubMed CentralCASPubMed Google Scholar
Segal MB, Burgess AM (1974) A combined physiological and morphological study of the secretory process in the rabbit choroid plexus. J Cell Sci 14:339–350 CASPubMed Google Scholar
Christensen HL, Nguyen AT, Pedersen FD, Damkier HH (2013) Na(+) dependent acid-base transporters in the choroid plexus; insights from slc4 and slc9 gene deletion studies. Front Physiol 4:304. doi:10.3389/fphys.2013.00304 PubMed CentralPubMed Google Scholar
Damkier HH, Praetorius J (2012) Genetic ablation of Slc4a10 alters the expression pattern of transporters involved in solute movement in the mouse choroid plexus. Am J Physiol Cell Physiol 302:C1452–C1459. doi:10.1152/ajpcell.00285.2011 ArticleCASPubMed Google Scholar
Saito Y, Wright EM (1983) Bicarbonate transport across the frog choroid plexus and its control by cyclic nucleotides. J Physiol 336:635–648 ArticlePubMed CentralCASPubMed Google Scholar
Mayer SE, Sanders-Bush E (1993) Sodium-dependent antiporters in choroid plexus epithelial cultures from rabbit. J Neurochem 60:1308–1316 ArticleCASPubMed Google Scholar
Oshio K, Song Y, Verkman AS, Manley GT (2003) Aquaporin-1 deletion reduces osmotic water permeability and cerebrospinal fluid production. Acta Neurochir 86(Suppl):525–528 CAS Google Scholar
Oshio K, Watanabe H, Song Y et al (2005) Reduced cerebrospinal fluid production and intracranial pressure in mice lacking choroid plexus water channel Aquaporin-1. FASEB J 19:76–78. doi:10.1096/fj.04-1711fje CASPubMed Google Scholar
Silverberg GD, Huhn S, Jaffe RA et al (2002) Downregulation of cerebrospinal fluid production in patients with chronic hydrocephalus. J Neurosurg 97:1271–1275. doi:10.3171/jns.2002.97.6.1271 ArticlePubMed Google Scholar
Lindvall M, Owman C (1981) Autonomic nerves in the mammalian choroid plexus and their influence on the formation of cerebrospinal fluid. J Cereb Blood Flow Metab 1:245–266. doi:10.1038/jcbfm.1981.30 ArticleCASPubMed Google Scholar
Szentistványi I, Patlak CS, Ellis RA, Cserr HF (1984) Drainage of interstitial fluid from different regions of rat brain. Am J Physiol 246:F835–F844 PubMed Google Scholar
Johnston M, Zakharov A, Papaiconomou C et al (2004) Evidence of connections between cerebrospinal fluid and nasal lymphatic vessels in humans, non-human primates and other mammalian species. Cerebrospinal Fluid Res 1:2. doi:10.1186/1743-8454-1-2 ArticlePubMed CentralPubMed Google Scholar
Koh L, Zakharov A, Johnston M (2005) Integration of the subarachnoid space and lymphatics: Is it time to embrace a new concept of cerebrospinal fluid absorption? Cerebrospinal Fluid Res 2:6. doi:10.1186/1743-8454-2-6 ArticlePubMed CentralPubMed Google Scholar
Biceroglu H, Albayram S, Ogullar S et al (2012) Direct venous spinal reabsorption of cerebrospinal fluid: a new concept with serial magnetic resonance cisternography in rabbits. J Neurosurg Spine 16:394–401. doi:10.3171/2011.12.SPINE11108 ArticlePubMed Google Scholar
Murtha LA, Yang Q, Parsons MW et al (2014) Cerebrospinal fluid is drained primarily via the spinal canal and olfactory route in young and aged spontaneously hypertensive rats. Fluids Barriers CNS 11:12. doi:10.1186/2045-8118-11-12 ArticlePubMed CentralPubMed Google Scholar
Bulat M, Lupret V, Orehković D, Klarica M (2008) Transventricular and transpial absorption of cerebrospinal fluid into cerebral microvessels. Coll Antropol 32(Suppl 1):43–50 PubMed Google Scholar
Zhang ET, Inman CB, Weller RO (1990) Interrelationships of the pia mater and the perivascular (Virchow–Robin) spaces in the human cerebrum. J Anat 170:111–123 PubMed CentralCASPubMed Google Scholar
del Zoppo GJ, Moskowitz M, Nedergaard M (2015) The neurovascular unit and responses to ischemia. In: Grotta J, Albers G, Broderick J, Kasner S, Lo E, Medelow AD, Sacco R, Wong L (eds) Stroke: pathophysiology, diagnosis, and management, 6th Edn. Elsevier, Philadelphia.
Cipolla M (2010) Anatomy and ultrastructure. Cereb, Circ Google Scholar
Iliff JJ, Wang M, Liao Y et al (2012) A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci Transl Med 4:147ra111. doi: 10.1126/scitranslmed.3003748
Bradbury M, Cserr H (1985) Drainage of cerebral interstitial fluid and of cerebrospinal fluid into lymphatics. In: Johnston M (ed) Experimental Biology of the lymphatic circulation. Elsevier, New York, pp 355–394 Google Scholar
Weller RO, Subash M, Preston SD et al (2008) Perivascular drainage of amyloid-beta peptides from the brain and its failure in cerebral amyloid angiopathy and Alzheimer’s disease. Brain Pathol 18:253–266. doi:10.1111/j.1750-3639.2008.00133.x ArticleCASPubMed Google Scholar
Carare RO, Bernardes-Silva M, Newman TA et al (2008) Solutes, but not cells, drain from the brain parenchyma along basement membranes of capillaries and arteries: significance for cerebral amyloid angiopathy and neuroimmunology. Neuropathol Appl Neurobiol 34:131–144. doi:10.1111/j.1365-2990.2007.00926.x ArticleCASPubMed Google Scholar
Hawkes CA, Härtig W, Kacza J et al (2011) Perivascular drainage of solutes is impaired in the ageing mouse brain and in the presence of cerebral amyloid angiopathy. Acta Neuropathol 121:431–443. doi:10.1007/s00401-011-0801-7 ArticlePubMed Google Scholar
Björkhem I, Lütjohann D, Diczfalusy U et al (1998) Cholesterol homeostasis in human brain: turnover of 24S-hydroxycholesterol and evidence for a cerebral origin of most of this oxysterol in the circulation. J Lipid Res 39:1594–1600 PubMed Google Scholar
Lütjohann D, Breuer O, Ahlborg G et al (1996) Cholesterol homeostasis in human brain: evidence for an age-dependent flux of 24S-hydroxycholesterol from the brain into the circulation. Proc Natl Acad Sci USA 93:9799–9804. doi:10.1073/pnas.93.18.9799 ArticlePubMed CentralPubMed Google Scholar
Fagan AM, Holtzman DM, Munson G et al (1999) Unique lipoproteins secreted by primary astrocytes from wild type, apoE (−/−), and human apoE transgenic mice. J Biol Chem 274:30001–30007. doi:10.1074/jbc.274.42.30001 ArticleCASPubMed Google Scholar
Strittmatter WJ, Saunders AM, Schmechel D et al (1993) Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc Natl Acad Sci USA 90:1977–1981. doi:10.1073/pnas.90.5.1977 ArticlePubMed CentralCASPubMed Google Scholar
Corder EH, Saunders AM, Strittmatter WJ et al (1993) Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 261:921–923. doi:10.1126/science.8346443 ArticleCASPubMed Google Scholar
Boyles JK, Pitas RE, Wilson E et al (1985) Apolipoprotein E associated with astrocytic glia of the central nervous system and with nonmyelinating glia of the peripheral nervous system. J Clin Invest 76:1501–1513. doi:10.1172/JCI112130 ArticlePubMed CentralCASPubMed Google Scholar
Xu Q, Bernardo A, Walker D et al (2006) Profile and regulation of apolipoprotein E (ApoE) expression in the CNS in mice with targeting of green fluorescent protein gene to the ApoE locus. J Neurosci 26:4985–4994. doi:10.1523/JNEUROSCI.5476-05.2006 ArticleCASPubMed Google Scholar
Rangroo Thrane V, Thrane AS, Plog BA et al (2013) Paravascular microcirculation facilitates rapid lipid transport and astrocyte signaling in the brain. Sci Rep 3:2582. doi:10.1038/srep02582 PubMed Google Scholar
Murfee WL, Skalak TC, Peirce SM (2005) Differential arterial/venous expression of NG2 proteoglycan in perivascular cells along microvessels: identifying a venule-specific phenotype. Microcirculation 12:151–160. doi:10.1080/10739680590904955 ArticleCASPubMed Google Scholar
Stoodley MA, Brown SA, Brown CJ, Jones NR (1997) Arterial pulsation-dependent perivascular cerebrospinal fluid flow into the central canal in the sheep spinal cord. J Neurosurg 86:686–693. doi:10.3171/jns.1997.86.4.0686 ArticleCASPubMed Google Scholar
Bilston LE, Stoodley MA, Fletcher DF (2010) The influence of the relative timing of arterial and subarachnoid space pulse waves on spinal perivascular cerebrospinal fluid flow as a possible factor in syrinx development. J Neurosurg 112:808–813. doi:10.3171/2009.5.JNS08945 ArticlePubMed Google Scholar
Tucker MA, Hirota Y, Wamsley EJ et al (2006) A daytime nap containing solely non-REM sleep enhances declarative but not procedural memory. Neurobiol Learn Mem 86:241–247. doi:10.1016/j.nlm.2006.03.005 ArticlePubMed Google Scholar
Madsen PL, Schmidt JF, Wildschiødtz G et al (1991) Cerebral O2 metabolism and cerebral blood flow in humans during deep and rapid-eye-movement sleep. J Appl Physiol 70:2597–2601 CASPubMed Google Scholar
Berridge CW, Waterhouse BD (2003) The locus coeruleus-noradrenergic system: modulation of behavioral state and state-dependent cognitive processes. Brain Res Rev 42:33–84. doi:10.1016/S0165-0173(03)00143-7 ArticlePubMed Google Scholar
Sabbatini M, Barili P, Bronzetti E et al (1999) Age-related changes of glial fibrillary acidic protein immunoreactive astrocytes in the rat cerebellar cortex. Mech Ageing Dev 108:165–172 ArticleCASPubMed Google Scholar
Takalo M, Salminen A, Soininen H et al (2013) Protein aggregation and degradation mechanisms in neurodegenerative diseases. Am J Neurodegener Dis 2:1–14 PubMed CentralPubMed Google Scholar
Grad LI, Yerbury JJ, Turner BJ et al (2014) Intercellular propagated misfolding of wild-type Cu/Zn superoxide dismutase occurs via exosome-dependent and -independent mechanisms. Proc Natl Acad Sci USA 111:3620–3625. doi:10.1073/pnas.1312245111 ArticlePubMed CentralCASPubMed Google Scholar
Kordower JH, Chu Y, Hauser RA et al (2008) Lewy body-like pathology in long-term embryonic nigral transplants in Parkinson’s disease. Nat Med 14:504–506. doi:10.1038/nm1747 ArticleCASPubMed Google Scholar
Li JY, Englund E, Holton JL et al (2008) Lewy bodies in grafted neurons in subjects with Parkinson’s disease suggest host-to-graft disease propagation. Nat Med 14:501–503. doi:10.1038/nm1746 ArticleCASPubMed Google Scholar
Maurizi CP (1991) Recirculation of cerebrospinal fluid through the tela choroidae is why high levels of melatonin can be found in the lateral ventricles. Med Hypotheses 35:154–158. doi:10.1016/0306-9877(91)90041-V ArticleCASPubMed Google Scholar
Gouw AA, Seewann A, van der Flier WM et al (2011) Heterogeneity of small vessel disease: a systematic review of MRI and histopathology correlations. J Neurol Neurosurg Psychiatry 82:126–135. doi:10.1136/jnnp.2009.204685 ArticlePubMed Google Scholar
Groeschel S, Chong WK, Surtees R, Hanefeld F (2006) Virchow–Robin spaces on magnetic resonance images: normative data, their dilatation, and a review of the literature. Neuroradiology 48:745–754. doi:10.1007/s00234-006-0112-1 ArticlePubMed Google Scholar
Tournier-Lasserve E, Joutel A, Melki J et al (1993) Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy maps to chromosome 19q12. Nat Genet 3:256–259. doi:10.1038/ng0393-256 ArticleCASPubMed Google Scholar
Roher AE, Kuo Y-M, Esh C et al (2003) Cortical and leptomeningeal cerebrovascular amyloid and white matter pathology in Alzheimer’s disease. Mol Med 9:112–122 PubMed CentralPubMed Google Scholar
Joutel A, Corpechot C, Ducros A et al (1996) Notch3 mutations in CADASIL, a hereditary adult-onset condition causing stroke and dementia. Nature 383:707–710. doi:10.1038/383707a0 ArticleCASPubMed Google Scholar
Plassman BL, Havlik RJ, Steffens DC et al (2000) Documented head injury in early adulthood and risk of Alzheimer’s disease and other dementias. Neurology 55:1158–1166. doi:10.1212/WNL.55.8.1158 ArticleCASPubMed Google Scholar
Pop V, Sorensen DW, Kamper JE et al (2013) Early brain injury alters the blood-brain barrier phenotype in parallel with beta-amyloid and cognitive changes in adulthood. J Cereb Blood Flow Metab 33:205–214. doi:10.1038/jcbfm.2012.154 ArticlePubMed CentralCASPubMed Google Scholar
Shaw GJ, Jauch EC, Zemlan FP (2002) Serum cleaved Tau protein levels and clinical outcome in adult patients with closed head injury. Ann Emerg Med 39:254–257. doi:10.1067/mem.2002.121214 ArticlePubMed Google Scholar
Zemlan FP, Jauch EC, Mulchahey JJ et al (2002) C-tau biomarker of neuronal damage in severe brain injured patients: association with elevated intracranial pressure and clinical outcome. Brain Res 947:131–139. doi:10.1016/S0006-8993(02)02920-7 ArticleCASPubMed Google Scholar
Gaberel T, Gakuba C, Goulay R et al (2014) Impaired glymphatic perfusion after strokes revealed by contrast-enhanced MRI: a new target for fibrinolysis? Stroke 45:3092–3096. doi:10.1161/STROKEAHA.114.006617 ArticleCASPubMed Google Scholar
Bradbury MW, Cserr HF, Westrop RJ (1981) Drainage of cerebral interstitial fluid into deep cervical lymph of the rabbit. Am J Physiol 240:F329–F336 CASPubMed Google Scholar
Rennels ML, Gregory TF, Blaumanis OR et al (1985) Evidence for a “paravascular” fluid circulation in the mammalian central nervous system, provided by the rapid distribution of tracer protein throughout the brain from the subarachnoid space. Brain Res 326:47–63. doi:10.1016/0006-8993(85)91383-6 ArticleCASPubMed Google Scholar
Rennels ML, Blaumanis OR, Grady PA (1990) Rapid solute transport throughout the brain via paravascular fluid pathways. Adv Neurol 52:431–439 CASPubMed Google Scholar
Aydin K, Terzibasioglu E, Sencer S et al (2008) Localization of cerebrospinal fluid leaks by gadolinium-enhanced magnetic resonance cisternography: a 5-year single-center experience. Neurosurgery 62:584–589. doi:10.1227/01.neu.0000317306.39203.24 ArticlePubMed Google Scholar
Lundgaard I, Li B, Xie L et al (2015) Direct neuronal glucose uptake heralds activity-dependent increases in cerebral metabolism. Nat Commun. doi:10.1038/ncomms7807 Google Scholar