Cross-linked Small Polyethylenimines: While Still Nontoxic, Deliver DNA Efficiently to Mammalian Cells in Vitro and in Vivo (original) (raw)
References
1. L. M. Schwiebert. Cystic fibrosis, gene therapy, and lung inflammation: for better or worse? Am. J. Physiol.286:L715–L716 (2004). Google Scholar
2. H. S. Kingdon and R. L. Lundblad. An adventure in biotechnology: the development of haemophilia A therapeutics - from whole-blood transfusion to recombinant DNA to gene therapy. Biotechnol. Appl. Biochem.35:141–148 (2002). Google Scholar
3. C. J. Kuo, F. Farnebo, E. Y. Yu, R. Christofferson, R. A. Swearingen, R. Carter, H. A. von Recum, J. Yuan, J. Kamihara, E. Flynn, R. D’Amato, J. Folkman, and R. C. Mulligan. Comparative evaluation of the antitumor activity of antiangiogenic proteins delivered by gene transfer. Proc. Natl. Acad. Sci. USA98:4605–4610 (2001). Google Scholar
4. C.-H. Lecellier and O. Voinnet. RNA silencing: no mercy for viruses? Immunol. Revs.198:285–303 (2004). Google Scholar
5. A. J. Frater, S. J. Fidler, and M. O. McClure. Gene therapy for AIDS and other infectious diseases. Gene Ther.9:189–213 (2002). Google Scholar
6. Q. Ge, L. Filip, A. Bai, N. Tam, H. N. Eisen, and J. Chen. Inhibition of influenza virus production in virus-infected mice by RNA interference. Proc. Natl. Acad. Sci. USA101:8676–8681 (2004). Google Scholar
8. M. E. Davis. Non-viral gene delivery systems. Curr. Opin. Biotechnol.13:128–131 (2002). Google Scholar
9. M. Thomas and A. M. Klibanov. Non-viral gene therapy: polycation-mediated DNA delivery. Appl. Microbiol. Biotechnol.62:27–34 (2003). Google Scholar
10. C. M. Wiethoff and R. C. Middaugh. Barriers to nonviral gene delivery. J. Pharm. Sci.92:203–217 (2003). Google Scholar
11. E. Check. Gene therapy: a tragic setback. Nature 420:116–118 (2002). Google Scholar
12. S. Hacein-Bey-Abina, C. Von Kalle, M. Schmidt, M. P. McCormack, N. Wulffraat, P. Leboulch, A. Lim, C. S. Osborne, R. Pawliuk, E. Morillon, R. Sorensen, A. Forster, P. Fraser, J.I. Cohen, G. de Saint Basile, I. Alexander, U. Wintergerst, T. Frebourg, A. Aurias, D. Stoppa-Lyonnet, S. Romana, I. Radford-Weiss, F. Gross, F. Valensi, E. Delabesse, E. Macintyre, F. Siqaux, J. Soulier, L. E. Leiva, M. Wissler, C. Prinz, T. H. Rabbitts, F. Le Deist, A. Fischer, and M. Cavazzana-Calvo. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science302:415–419 (2003). ArticleCASPubMed Google Scholar
13. N. Boyce. Trial halted after gene shows up in semen. Nature414:677–678 (2001). Google Scholar
14. G. Y. Wu and C. H. Wu. Receptor-mediated gene delivery and expression in vivo. J. Biol. Chem.263:14621–14624 (1988). Google Scholar
15. O. Boussif, F. Lezoualc’h, M. A. Zanta, M. D. Mergny, D. Scherman, B. Demeneix, and J.-P. Behr. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc. Natl. Acad. Sci. USA92:7297–7301 (1995). Google Scholar
16. W. T. Godbey, K. K. Wu, and A. G. Mikos. Tracking the intracellular path of poly(ethylenimine)/DNA complexes for gene delivery. Proc. Natl. Acad. Sci. USA96:5177–5181 (1999). Google Scholar
17. M. Thomas and A. M. Klibanov. Enhancing polyethylenimine’s delivery of plasmid DNA into mammalian cells. Proc. Natl. Acad. Sci. USA99:14640–14645 (2002). Google Scholar
18. J. Suh, D. Wirtz, and J. Hanes. Efficient active transport of gene nanocarriers to the cell nucleus. Proc. Natl. Acad. Sci. USA100:3878–3882 (2003). Google Scholar
19. N. D. Sonawane, F. C. Szoka Jr., and A. S. Verkman. Chloride accumulation and swelling in endosomes enhances DNA transfer by polyamine-DNA polyplexes. J. Biol. Chem.278:44826–44831 (2003). Google Scholar
20. E. Wagner. Strategies to improve DNA polyplexes for in vivo gene transfer: will “artificial viruses” be the answer? Pharm. Res.21:8–14 (2004). Google Scholar
21. A. Kirchler. Gene transfer with modified polyethylenimines. J. Gene Med.6:S3–S10 (2004). Google Scholar
22. M. L. Forrest, G. E. Meister, J. T. Koerber, and D. W. Pack. Partial acetylation of polyethylenimine enhances in vitro gene delivery. Pharm. Res.21:365–371 (2004). Google Scholar
23. Y.-B. Lim, S.-M. Kim, H. Suh, and J.-S. Park. Biodegradable, endosome disruptive, and cationic network-type polymer as a highly efficient and non-toxic gene delivery carrier. Bioconjug. Chem.13:952–957 (2002). Google Scholar
24. A. Akinc, D. M. Lynn, D. G. Anderson, and R. Langer. Parallel synthesis and characterization of a degradable polymer library for gene delivery. J. Am. Chem. Soc.125:5316–5323 (2003). Google Scholar
25. A. Kichler, C. Leborgne, J. Marz, O. Danos, and B. Bechinger. Histidine-rich amphipathic peptide antibiotics promote efficient delivery of DNA into mammalian cells. Proc. Natl. Acad. Sci. USA100:1564–1568 (2003). Google Scholar
26. Y. Liu, L. Wenning, M. Linch, and T. M. Reineke. New poly(D-glucaramidoamine)s induce DNA nanoparticle formation and efficient gene delivery into mammalian cells. J. Am. Chem. Soc.126:7422–7423 (2004). Google Scholar
27. S.-O. Han, R. I. Mahato, and S. W. Kim. Water-soluble lipopolymer for gene delivery. Bioconjug. Chem.12:337–345 (2001). Google Scholar
28. S. Kim, J. S. Choi, H. S. Jang, H. Suh, and J. Park. Hydrophobic modification of polyethyleneimine for gene transfectants. Bull. Korean Chem. Soc22:1069–1075 (2001). Google Scholar
29. C. L. Gebhart, S. Sriadibhatla, S. Vinogradov, P. Lemieux, V. Alakhov, and A. V. Kabanov. Design and formulation of polyplexes based on pluronic-polyethylenimine conjugates for gene transfer. Bioconjug. Chem.13:937–944 (2002). Google Scholar
30. N. Oku, Y. Yamazaki, M. Matsuura, M. Sugiyama, M. Hasegawa, and M. Nango. A novel non-viral gene transfer system, polycation liposomes. Adv. Drug Deliv. Revs.52:209–218 (2001). Google Scholar
31. M. A. Gosselin, W. Guo, and R. J. Lee. Efficient gene transfer using reversibly cross-linked low molecular weight polyethylenimine. Bioconjug. Chem.12:989–994 (2001). Google Scholar
32. H. Petersen, K. Kunath, A. L. Martin, S. Stolnik, C. J. Roberts, M. C. Davies, and T. Kissel. Star-shaped poly(ethylene glycol)-block-polyethylenimine copolymers enhance DNA condensation of low molecular weight polyethylenimines. Biomacromolecules3:926–936 (2002). Google Scholar
33. M. Thomas and A. M. Klibanov. Conjugation to gold nanoparticles enhances polyethylenimine’s transfer of plasmid DNA into mammalian cells. Proc. Natl. Acad. Sci. USA100:9138–9143 (2003). Google Scholar
34. J. Panyam and V. Labhasetwar. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv. Drug Deliv. Rev.55:329–347 (2003). Google Scholar
35. J. Wang, H.-Q. Mao, and K. W. Leong. A novel biodegradable gene carrier based on polyphosphoester. J. Am. Chem. Soc.123:9480–9481 (2001). Google Scholar
36. H. Peterson, T. Merdan, K. Kunath, D. Fisher, and T. Kissel. Poly(ethylenimine-co-L-lactamide-co-succinimide): a biodegradable polyethylenimine derivative with an advantageous pH-dependent hydrolytic degradation for gene delivery. Bioconjug. Chem.13:812–821 (2002). Google Scholar
37. C.-H. Ahn, S. Y. Chae, Y. H. Bae, and S. W. Kim. Biodegradable poly(ethylenimine) for plasmid DNA delivery. J. Control. Rel.80:273–282 (2002). Google Scholar
38. Y.-B. Lim, S.-O. Han, H.-U. Kong, Y. Lee, J.-S. Park, B. Jeong, and S. W. Kim. Biodegradable polyester, poly[(α-(4-aminobutyl)-L-glycolic acid], as a non-toxic gene carrier. Pharm. Res.17:811–816 (2000). Google Scholar
39. Y.-B. Lim, Y. H. Choi, and J.-S. Park. A self-destroying polycationic polymer: biodegradable poly(4-hydroxy-L-proline ester). J. Am. Chem. Soc.121:5633–5639 (1999). Google Scholar
40. M. L. Forrest, J. T. Koerber, and D. W. Pack. A degradable polyethylenimine derivative with low toxicity for highly efficient gene delivery. Bioconjug. Chem.14:934–940 (2003). Google Scholar
41. A. von Harpe, H. Petersen, Y. Li, and T. Kissel. Characterization of commercially available and synthesized polyethylenimines for gene delivery. J. Control. Rel.69:309–322 (2000). Google Scholar
42. Y. Tan and L. Huang. Overcoming the inflammatory toxicity of cationic gene vectors. J. Drug Target10:153–160 (2002). Google Scholar
43. D. V. Schaffer, N. A. Fidelman, N. Dan, and D. A. Lauffenburger. Vector unpacking as a potential barrier for receptor-mediated polyplex gene delivery. Biotechnol. Bioeng.67:598–606 (2000). Google Scholar
44. C. Moon, Y. Oh, and J. A. Roth. Current status of gene therapy for lung cancer and head and neck cancer. Clin. Cancer Res.9:5055–5067 (2003). Google Scholar
45. A. C. Willis and X. Chen. The promise and obstacle of p53 as a cancer therapeutic agent. Curr. Mol. Med.2:329–345 (2002). Google Scholar
46. Y. Zhang, T. Li, L. Fu, C. Yu, Y. Li, X. Xu, Y. Wang, H. Ning, S. Zhang, W. Chen, L. A. Babiuk, and Z. Chang. Silencing SARS-CoV spike protein expression in cultured cells by RNA interference. FEBS Lett.560:141–146 (2004). Google Scholar
47. D. J. Weiss. Delivery of gene transfer vectors to lung: obstacles and the role of adjunct techniques for airway administration. Mol. Ther.6:148–152 (2002). Google Scholar