AAPS-FDA Workshop White Paper: Microdialysis Principles, Application and Regulatory Perspectives (original) (raw)
U. Ungerstedt and C. Pycock. Functional correlates of dopamine neurotransmission. Bull. Schweiz. Akad. Med. Wiss.30:44–55 (1974). PubMedCAS Google Scholar
E. C. M. De Lange, A. G. De Boer, and D. D. Breimer. Methodological issues in microdialysis sampling for pharmacokinetic studies. Eds. R. Sawchuk and W. F. Elmquist. Adv. Drug Deliv. Rev. 45:125–148 ( 2000). Google Scholar
W. F. Elmquist and R. J. Sawchuk. Application of microdialysis in pharmacokinetic studies. Pharm. Res.14:267–288 (1997). Article Google Scholar
C. S. Chaurasia. In vivo microdialysis sampling: theory and applications. Biomed. Chromatogr.13:317–332 (1999). ArticlePubMedCAS Google Scholar
E. C. M. De Lange, and M. Danhof: Considerations in the use of cerebrospinal fluid pharmacokinetics to predict brain target concentrations in the clinical setting: implications of the barriers between blood and brain. Clin. Pharmacokinet.41:691–703, 2002. ArticlePubMed Google Scholar
M. I. Davies, J. D. Cooper, S. S. Desmond, C. E. Lunte, and S. M. Lunte. Analytical considerations for microdialysis sampling. Adv. Drug Deliv. Rev.45:169–88 (2000). ArticlePubMedCAS Google Scholar
E. C. M. De Lange, M. Danhof, A. G. De Boer, and D. D. Breimer. Methodological considerations of intracerebral microdialysis in pharmacokinetic studies on blood–brain barrier transport of drugs. Brain Res. Rev.25:27–49 (1997). ArticlePubMed Google Scholar
U. Ungerstedt. Microdialysis—principles and applications for studies in animals and man. J. Intern. Med.230:365–373 (1991). ArticlePubMedCAS Google Scholar
E. C. M. De Lange, A. H. de Bock, A. G. de Boer Schinkel, and D. D. Breimer. BBB transport and P-glycoprotein functionality using MDR1A (−/−) and wild-type mice. Total brain versus microdialysis concentration profiles of rhodamine-123. Pharm. Res.15:1657–1665 (1998). ArticlePubMed Google Scholar
P. M. Bungay and R. L. Dedrick, E. Fox, and F. M. Balis. Probe calibration in transient microdialysis in vivo. Pharm. Res. 18:361–366 (2001). ArticlePubMedCAS Google Scholar
A. D. Smith and J. B. Justice Jr. The effect of inhibition of synthesis, release, metabolism and uptake on the microdialysis extraction fraction of dopamine. J. Neurosci. Methods54:75–82 (1994). ArticlePubMedCAS Google Scholar
E. C. M. De Lange, P. G. M. Ravenstijn, D. Groenendaal, and T. S. van Steeg. Towards the prediction of CNS drug effect profiles in physiological and pathological conditions using microdialysis and mechanism-based pharmacokinetic-pharmacodynamic modeling. AAPS J.7:E532–543, (2005). ArticlePubMedCAS Google Scholar
P. Ederoth, K. Tunblad, R. Bouw, J. C. F. Lundberg, U. Ungerstedt, C. H. Nordström, and M. Hammarlund-Udenaes. Blood–brain barrier transport of morphine in patients with severe brain trauma. Brit. J. Clin. Pharmacol.57:427–435 (2004). ArticlePubMedCAS Google Scholar
L. B. Stolle, M. Arpi, P. Holmberg-Jorgensen, P. Riegels-Nielsen, and J. Keller. Application of microdialysis to cancellous bone tissue for measurement of gentamicin levels. J. Antimicrob. Chemother. 54:263–265 (2004). ArticlePubMedCAS Google Scholar
T. Zhu, B. W. Cheung, L. L. Cartier, G. S. Giebink, and R. J. Sawchuk. Simultaneous intravenous and intramiddle-ear dosing to determine cefditoren influx and efflux clearances in middle ear fluid in freely moving chinchillas. J. Pharm. Sci. 92:1947–1956 (2003). ArticlePubMedCAS Google Scholar
S. R. Skilling, D. H. Smullin, A. J. Beitz, and A. A. Larson. Extracellular amino acid concentrations in the dorsal spinal cord of freely moving rats following veratridine and nociceptive stimulation. J. Neurochem.51:127–132, (1988). ArticlePubMedCAS Google Scholar
B. S. Anand, H. Atluri, and A. K. Mitra. Validation of an ocular microdialysis technique in rabbits with permanently implanted vitreous probes: systemic and intravitreal pharmacokinetics of fluorescein. Int. J. Pharm. 28:79–88 (2004). ArticleCAS Google Scholar
M. Qian, W. West, J. T. Wu, B. Lu, and D. D. Christ. Development of a dog microdialysis model for determining synovial fluid pharmacokinetics of anti-arthritis compounds exemplified by methotrexate. Pharm. Res.20:605–10 (2003). ArticlePubMedCAS Google Scholar
E. Solligård, I. S..Juel, K. Bakkelund, P.Jynge, K. E. Tvedt H. Johnsen, P. Aadahl, and J. E. Grønbech. Gut luminal microdialysis of glycerol as a marker of intestinal ischemic injury and recovery. Crit. Care Med. 33:2278–2285 (2005). ArticlePubMed Google Scholar
J. L. Krup and C. M. Bernards. Pharmacokinetics of intrathecal oligodeoxynucleotides. Anesthesiology. 100:315–322 (2004). Article Google Scholar
Y. Wang and R. J. Sawchuk. Zidovudine transport in the rabbit brain during intravenous and intracerebroventricular infusion. J. Pharm. Sci.84:871–876 (1995). ArticlePubMedCAS Google Scholar
J. Riese, S. Boecker, W. Hohenberger, P. Klein, and W. Haupt. Microdialysis: a new technique to monitor perioperative human peritoneal mediator production. Surg. Infect.4:11–5 (2003). Article Google Scholar
M. Brunner and M. Muller. Microdialysis: an in vivo approach for measuring drug delivery in oncology. Eur. J. Clin. Pharmacol.58: 227-234 (2002). ArticlePubMedCAS Google Scholar
A. Galvan, Y. Smith, and T. Wichmann. Continuous monitoring of intracerebral glutamate levels in awake monkeys using microdialysis and enzyme fluorometric detection. J.Neurosci. Methods.126:175–85 (2003). ArticlePubMedCAS Google Scholar
P. F. Morrison, P. M. Bungay, J. K. Hsiao, I. N. Mefford,K. H. Dykstra, and R. L. Dedrick. Quantitative microdialysis. In: T. E. Robinson, J. B. Justice, Jr. (eds.), Microdialysis in the Neurosciences. Elsevier, N.Y., 1996, pp. 47–80. Google Scholar
K. C. Chen, M. Höistad, J. Kehr, J., K. Fuxe, and C. Nicholson. Theory relating in vitro and in vivo microdialysis of one or two probes. J. Neurochem. 81:108–121 (2002). ArticlePubMedCAS Google Scholar
P. M. Bungay, P. F. Morrison, R. L. Dedrick, V. I. Chefer, A. Zapata. Principles of Quantitative Microdialysis. In B. H. C. Westerink, T. I. F. H. Cremers (eds.) Handbook of Microdialysis, Vol. 16: Methods, Applications and Perspectives. Elsevier, N.Y. (in press).
P. Lönnroth, P A. Jansson, and U. Smith. A microdialysis method allowing characterization of intercellular water space in humans. Am. J. Physiol.253(2 pt 1):E228–E231(1987). PubMed Google Scholar
R. J. Olson and J. B. Justice, Jr. Quantitative microdialysis under transient conditions. Anal. Chem. 65:1017–1022 (1993). ArticlePubMedCAS Google Scholar
Y. S. L. Wang, and R. J. Sawchuk. Microdialysis calibration using retrodialysis and zero-net flux: application to a study of the distribution of zidovudine to rabbit cerebrospinal fluid and thalamus. Pharm. Res.10:1411–1419 (1993). ArticlePubMedCAS Google Scholar
M. R. Bouw, M. Hammarlund-Udenaes. Methodological aspects of the use of a calibrator in in vivo microdialysis—further development of the retrodialysis method. Pharm. Res.15:1673–1679 (1998). ArticlePubMedCAS Google Scholar
L. Strindberg and P. Lönnroth. Validation of an endogenous reference technique for the calibration of microdialysis catheters. Scand. J. Clin. Lab. Invest.60:205–211 (2000). ArticlePubMedCAS Google Scholar
H. Yang, J. L. Peters, and A. C. Michael. Coupled effects of mass transfer and uptake kinetics on in vivo microdialysis of dopamine. J. Neurochem. 71:684–692 (1998). ArticlePubMedCAS Google Scholar
P. M. Bungay, P. Newton-Vinson, W. Isele, P. A. Garris, and J. B. Justice, Jr. Microdialysis of dopamine interpreted with quantitative model incorporating probe implantation trauma. J. Neurochem. 86:932–946 (2003). ArticlePubMedCAS Google Scholar
K. C. Chen. Effects of tissue trauma on the characteristics of microdialysis zero-net-flux method sampling neurotransmitters. J. Theor. Biol.238:863–881 (2006). ArticlePubMedCAS Google Scholar
K. H. Dystra, J. K. Hsiao,P. F. Morrison,P. M. Bungay, I. N. Mefford, M. M. Scully, and R. L. Dedrick. Quantitative examination of tissue concentration profiles associated with microdialysis. J. Neurochem. 58:931–940 (1992). Article Google Scholar
M. Höistad, K. C. Chen, C. Nicholson, K. Fuxe, and J. Kehr. Quantitative dual-probe microdialysis: evaluation of [3H]mannitol diffusion in agar and rat striatum. J. Neurochem. 81:80–93 (2002). ArticlePubMed Google Scholar
P. Lönnroth and L. Strindberg. Validation of the ‘internal reference technique’ for calibrating microdialysis catheters in situ. Acta. Physiol. Scand.153:375–80 (1995). ArticlePubMed Google Scholar
M. Müller. Microdialysis in clinical drug delivery studies. Adv. Drug. Deliv. Rev.45:255–269 (2000). ArticlePubMed Google Scholar
C. Kennergren, V. Mantovani, L. Strindberg, E. Berglin, A. Hamberger, P. Lönnroth. Myocardial interstitial glucose and lactate before, during, and after cardioplegic heart arrest. Am. J. Physiol., Endocrinol. Metabol.284:E788–94 (2003). CAS Google Scholar
B. M. Bellander, E. Cantais E, P. Enblad et al. Consensus meeting on microdialysis in neurointensive care. Intensive Care Med. 30(12):2166–2169 (2004). ArticlePubMed Google Scholar
C. M. Tolias and M. R. Bullock. Critical Appraisal of Neuroprotection T1 Injury: What Have We Learned? NeuroRx1:71–79 (2004). ArticlePubMed Google Scholar
M. Müller, A. dela Pena, and H. Derendorf. Issues in pharmacokinetics and pharmacodynamics of anti-infective agents: distribution in tissue. Antimicrob. Agents Chemother. 48:1441–53 (2004). ArticlePubMedCAS Google Scholar
M. Brunner, H. Derendorf, and M. Müller. Microdialysis for in vivo pharmacokinetic/pharmacodynamic characterization of anti-infective drugs. Curr. Opin. Pharmacol.5:495–499 (2005). ArticlePubMedCAS Google Scholar
M. Brunner and M. Müller. Microdialysis: an in vivo approach for measuring drug delivery in oncology. Eur. J. Clin. Pharmacol. 58:227–234 (2002) ArticlePubMedCAS Google Scholar
V. P. Shah, G. L. Flynn, A Yacobi, H. I. Maibach, C. Bon, N. M. Fleischer, T. J. Franz, S. A. Kaplan, J. Kawamoto, L. J. Lesko, J. P. Marty, L. K. Pershing, H. Schaefer, J. A. Sequeira, S. P. Shrivastava, and W. J. Wilkin. Bioequivalence of topical dermatological dosage forms—methods of evaluation of bioequivalence. Pharm. Res.15: 167–171 (1998). ArticlePubMedCAS Google Scholar
M. Kreilgaard, M. J. Kemme, J. Burggraff, R. C. Schoemaker, and A. F. Cohen. Influence of a microemulsion vehicle on cutaneous bioequivalence of a lipophilic model drug assessed by microdialysis and pharmacodynamics. Pharm. Res.18:593–599, (2001). ArticlePubMedCAS Google Scholar
L. Groth L, P. García Ortiz, and E. Benfeldt. Microdialysis methodology for sampling in the skin. In: J Serup, GBE Jemec, and G Grove (eds.), Handbook of Non-Invasive Methods and the Skin. CRC, Boca Raton: 2006, pp. 443–454. Google Scholar
E. Benfeldt, J. Serup, and T. Menne. Effect of barrier perturbation on cutaneous salicylic acid penetration in human skin: in vivo pharmacokinetics using microdialysis and non-invasive quantification of barrier function. Br. J. Dermatol. **140:**739–748 (1999). ArticlePubMedCAS Google Scholar
S. McDonald and C. Lunte. Determination of the dermal penetration of esterom components using microdialysis sampling. Pharm. Res. 20:1827–1834 (2003). ArticlePubMedCAS Google Scholar
E. Benfeldt, S. Honoré Hansen, A. Vølund, T. Menné, and V. P. Shah. Bioequivalence of topical formulations in humans: evaluation by dermal microdialysis sampling and the dermato-pharmacokinetic method. J. Invest. Dermatol. July 27(2006) (in press).
P. Lönnroth. Microdialysis in adipose tissue and skeletal muscle. Horm. Metab. Res.29:344–346 (1997). PubMed Google Scholar
F. Magkos and L. S. Sidossis. Methodological approaches to the study of metabolism across individual tissues in man. Curr. Opin. Clin. Nutr. Metab. Care8:501–510 (2005). ArticlePubMedCAS Google Scholar
V. Qvisth, E. Hagström-Toft, S. Enoksson, R. S. Sherwin, S Sjöberg, and J. Bolinder. Combined hyperinsulinemia, but not hyperinsulinemia alone, suppress human skeletal muscle lipolytic activity in vivo. J. Clin. Endocrinol. Metab.89:4693–4700 (2004). ArticlePubMedCAS Google Scholar
J. Bolinder, U. Ungerstedt, and P. Arner. Long-term continuous glucose monitoring with microdialysis in ambulatory insulin-dependent diabetic patients. Lancet342:1080–1085 (1993). ArticlePubMedCAS Google Scholar
A. Maran, C Crepaldi, A. Tiengo, G. Grassi, E. Vitali, G. Pagano, S. Bistoni, G. Calabrese, F. saneusanio, F. Leonetti, M. Ribaudo, U. Di Mario, G. Anuzzi, S. Genovese, G. Riccardi, M. previti, D. Cucinotta, F. Giorgino, A. Bellomo, R. Giorgino, A. Poscia, and M Varalli. Continuous subcutaneous glucose monitoring in diabetic patients: a multicenter analysis. Diabetes Care25: 347–352 (2002). ArticlePubMedCAS Google Scholar
D. C. Klonoff. Continuous glucose monitoring: roadmap for 21st century diabetes therapy. Diabetes Care28:1231–1239 (2005). ArticlePubMed Google Scholar
D. L. Kellogg Jr., Y. Liu, P. E. Pergola, and L. J. Roman. In Vivo measurement of nitric oxide concentrations in humans. FASEB J.13:A104 (1999). Google Scholar
Catalyst pharmaceuticals partners files investigational new drug application for CPP-109 to treat cocaine addiction (2005) http://www.bnl.gov/CTN/GVG/CPP.asp), (accessed 10/23/06)
EMEA (2006). 4.1.2. In vivo studies in: guideline on the non-clinical investigation of the dependence potential of medicinal products. European Medicines Agency, Evaluation of Medicines for Human Use. http://www.emea.eu.int/pdfs/human/swp/9422704en.pdf) (accessed 10/23/06)
FDA (2004). Innovation or stagnation? Challenge and opportunity on the Critical Path to new medical products. US Department of Health and Human Services, Food and Drug Administration.