The Impact of Aqueous Solubility and Dose on the Pharmacokinetic Profiles of Resveratrol (original) (raw)

References

  1. J. A. Baur, and D.A. Sinclair. Therapeutic potential of resveratrol: the in vivo evidence. Nat. Rev. Drug. Discov. 5:493–506 (2006).
    Article PubMed CAS Google Scholar
  2. J. A. Baur, K. J. Pearson, N. L. Price, H. A. Jamieson, C. Lerin, A. Kalra, V. V. Prabhu, J. S. Allard, G. Lopez-Lluch, K. Lewis, P. J. Pistell, S. Poosala, K. G. Becker, O. Boss, D. Gwinn, M. Wang, S. Ramaswamy, K. W. Fishbein, R. G. Spencer, E. G. Lakatta, D. Le Couteur, R. J. Shaw, P. Navas, P. Puigserver, D. K. Ingram, R. de Cabo, and D. A. Sinclair. Resveratrol improves health and survival of mice on a high-calorie diet. Nature. 444:337–342 (2006) doi:10.1038/nature05354.
    Article PubMed CAS Google Scholar
  3. M. Jang, L. Cai, G. O. Udeani, K. V. Slowing, C. F. Thomas, C. W. Beecher, H. H. Fong, N. R. Farnsworth, A. D. Kinghorn, R. G. Mehta, R. C. Moon, and J. M. Pezzuto. Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science. 275:218–220 (1997) doi:10.1126/science.275.5297.218.
    Article PubMed CAS Google Scholar
  4. ClinicalTrial.gov. A service of the U.S. National Institutes of Health. http://www.clinicaltrial.gov/ct2/results?term=resveratrol.
  5. D. Delmas, A. Lancon, D. Colin, B. Jannin, and N. Latruffe. Resveratrol as a chemopreventive agent: a promising molecule for fighting cancer. Curr. Drug Targets. 7:423–442 (2006) doi:10.2174/138945006776359331.
    Article PubMed CAS Google Scholar
  6. D. M. Goldberg, J. Yan, and G. J. Soleas. Absorption of three wine-related polyphenols in three different matrices by healthy subjects. Clin. Biochem. 36:79–87 (2003) doi:10.1016/S0009-9120(02)00397-1.
    Article PubMed CAS Google Scholar
  7. T. Walle, F. Hsieh, M. H. DeLegge, J. E. Oatis Jr., and U. K. Walle. High absorption but very low bioavailability of oral resveratrol in humans. Drug Metab. Dispos. 32:1377–1382 (2004) doi:10.1124/dmd.104.000885.
    Article PubMed CAS Google Scholar
  8. D. J. Boocock, G. E. Faust, K. R. Patel, A. M. Schinas, V. A. Brown, M. P. Ducharme, T. D. Booth, J. A. Crowell, M. Perloff, A. J. Gescher, W. P. Steward, and D. E. Brenner. Phase I dose escalation pharmacokinetic study in healthy volunteers of resveratrol, a potential cancer chemopreventive agent. Cancer Epidemiol. Biomarkers Prev. 16:1246–1252 (2007) doi:10.1158/1055-9965.EPI-07-0022.
    Article PubMed CAS Google Scholar
  9. S. Hurst, C.M. Loi, J. Brodfuehrer, and A. El-Kattan. Impact of physiological, physicochemical and biopharmaceutical factors in absorption and metabolism mechanisms on the drug oral bioavailability of rats and humans. Expert Opin. Drug Metab. Toxicol. 3:469–489 (2007) doi:10.1517/17425255.3.4.469.
    Article PubMed CAS Google Scholar
  10. O. H. Chan, and B. H. Stewart. Physicochemical and drug-delivery considerations for oral drug bioavailability. Drug Discov. Today. 1:461–473 (1996) doi:10.1016/1359-6446(96)10039-8.
    Article CAS Google Scholar
  11. M. I. Kaldas, U. K. Walle, and T. Walle. Resveratrol transport and metabolism by human intestinal Caco-2 cells. J. Pharm. Pharmacol. 55:307–312 (2003) doi:10.1211/002235702612.
    Article PubMed CAS Google Scholar
  12. A. Maier-Salamon, B. Hagenauer, M. Wirth, F. Gabor, T. Szekeres, and W. Jager. Increased transport of resveratrol across monolayers of the human intestinal Caco-2 cells is mediated by inhibition and saturation of metabolites. Pharm. Res. 23:2107–2115 (2006) doi:10.1007/s11095-006-9060-z.
    Article PubMed CAS Google Scholar
  13. V. Bertacche, N. Lorenzi, D. Nava, E. Pini, and C. Sinico. Host–guest interaction study of resveratrol with natural and modified cyclodextrins. J. Incl. Phenom. Macrocycl. Chem. 55:279–287 (2006) doi:10.1007/s10847-006-9047-8.
    Article CAS Google Scholar
  14. J. F. Marier, P. Vachon, A. Gritsas, J. Zhang, J. P. Moreau, and M. P. Ducharme. Metabolism and disposition of resveratrol in rats: extent of absorption, glucuronidation, and enterohepatic recirculation evidenced by a linked-rat model. J. Pharmacol. Exp. Ther. 302:369–373 (2002) doi:10.1124/jpet.102.033340.
    Article PubMed CAS Google Scholar
  15. C. Yu, Y. G. Shin, A. Chow, Y. Li, J. W. Kosmeder, Y. S. Lee, W. H. Hirschelman, J. M. Pezzuto, R. G. Mehta, and R. B. van Breemen. Human, rat, and mouse metabolism of resveratrol. Pharm. Res. 19:1907–1914 (2002) doi:10.1023/A:1021414129280.
    Article PubMed CAS Google Scholar
  16. A. J. Gescher, and W. P. Steward. Relationship between mechanisms, bioavailibility, and preclinical chemopreventive efficacy of resveratrol: a conundrum. Cancer Epidemiol. Biomarkers Prev. 12:953–957 (2003).
    PubMed CAS Google Scholar
  17. M. E. Davis, and M. E. Brewster. Cyclodextrin-based pharmaceutics: past, present and future. Nat. Rev. Drug Discov. 3:1023–1035 (2004) doi:10.1038/nrd1576.
    Article PubMed CAS Google Scholar
  18. A. Katsagonis, J. Atta-Politou, and M. A. Koupparis. HPLC method with UV detection for the determination of _trans_-resveratrol in plasma. J. Liq. Chromatogr. Relat. Technol. 28:1393–1405 (2005) doi:10.1081/JLC-200054884.
    Article CAS Google Scholar
  19. H. S. Lin, C. S. Chean, Y. Y. Ng, S. Y. Chan, and P. C. Ho. 2-hydroxypropyl-beta-cyclodextrin increases aqueous solubility and photostability of all-trans-retinoic acid. J. Clin. Pharm. Ther. 25:265–269 (2000) doi:10.1046/j.1365-2710.2000.00285.x.
    Article PubMed CAS Google Scholar
  20. T. Higuchi, and K. A. Connors. Phase-solubility techniques. Advan. Anal. Chem. Instr. 4:117–212 (1965).
    CAS Google Scholar
  21. H. S. Lin, S. Y. Chan, K. S. Low, M. L. Shoon, and P. C. Ho. Kinetic study of a 2-hydroxypropyl-beta-cyclodextrin-based formulation of all-trans-retinoic acid in Sprague–Dawley rats after oral or intravenous administration. J. Pharm. Sci. 89:260–267 (2000) doi:10.1002/(SICI)1520-6017(200002)89:2<260::AID-JPS13>3.0.CO;2-Q.
    Article PubMed CAS Google Scholar
  22. H. S. Lin, W. W. Leong, J. A. Yang, P. Lee, S. Y. Chan, and P. C. Ho. Biopharmaceutics of 13-cis-retinoic acid (isotretinoin) formulated with modified beta-cyclodextrins. Int. J. Pharm. 341:238–245 (2007) doi:10.1016/j.ijpharm.2007.03.050.
    Article PubMed CAS Google Scholar
  23. H. S. Lin, A. B. Barua, J. A. Olson, K. S. Low, S. Y. Chan, M. L. Shoon, and P. C. Ho. Pharmacokinetic study of all-trans-retinoyl-beta-d-glucuronide in Sprague–Dawley rats after single and multiple intravenous administration(s). J. Pharm. Sci. 90:2023–2031 (2001) doi:10.1002/jps.1153.
    Article PubMed CAS Google Scholar
  24. K. Uekama, and M. Otagiri. Cyclodextrins in drug carrier systems. Crit. Rev. Ther. Drug Carr. Syst. 3:1–40 (1987).
    CAS Google Scholar
  25. C. F. Hung, Y. K. Lin, Z. R. Huang, and J. Y. Fang. Delivery of resveratrol, a red wine polyphenol, from solutions and hydrogels via the skin. Biol. Pharm. Bull. 31:955–962 (2008) doi:10.1248/bpb.31.955.
    Article PubMed CAS Google Scholar
  26. G. Piel, B. Evrard, T. Van Hees, and L. Delattre. Comparison of the IV pharmacokinetics in sheep of miconazole–cyclodextrin solutions and a micellar solution. Int. J. Pharm. 180:41–45 (1999) doi:10.1016/S0378-5173(98)00403-7.
    Article PubMed CAS Google Scholar
  27. V. J. Stella, V. M. Rao, E. A. Zannou, and V. V. Zia. Mechanisms of drug release from cyclodextrin complexes. Adv. Drug Deliv. Rev. 36:3–16 (1999) doi:10.1016/S0169-409X(98)00052-0.
    Article PubMed CAS Google Scholar
  28. Z. Lu, Y. Zhang, H. Liu, J. Yuan, Z. Zheng, and G. Zou. Transport of a cancer chemopreventive polyphenol, resveratrol: interaction with serum albumin and hemoglobin. J. Fluoresc. 17:580–587 (2007) doi:10.1007/s10895-007-0220-2.
    Article PubMed CAS Google Scholar
  29. O. H. Chan, and B. H. Stewart. Physicochemical and drug delivery considerations for oral drug bioavailability. Drug Discov. Today. 1:461–473 (1996) doi:10.1016/1359-6446(96)10039-8.
    Article Google Scholar
  30. C. De Santi, A. Pietrabissa, R. Spisni, F. Mosca, and G. M. Pacifici. Sulphation of resveratrol, a natural product present in grapes and wine, in the human liver and duodenum. Xenobiotica. 30:609–617 (2000) doi:10.1080/004982500406435.
    Article PubMed Google Scholar
  31. W. Andlauer, J. Kolb, K. Siebert, and P. Furst. Assessment of resveratrol bioavailability in the perfused small intestine of the rat. Drugs Exp. Clin. Res. 26:47–55 (2000).
    PubMed CAS Google Scholar
  32. G. Kuhnle, J. P. Spencer, G. Chowrimootoo, H. Schroeter, E. S. Debnam, S. K. Srai, C. Rice-Evans, and U. Hahn. Resveratrol is absorbed in the small intestine as resveratrol glucuronide. Biochem. Biophys. Res. Commun. 272:212–217 (2000) doi:10.1006/bbrc.2000.2750.
    Article PubMed CAS Google Scholar

Download references