RETRACTED ARTICLE: Chemopreventive Potential of Resveratrol in Mouse Skin Tumors Through Regulation of Mitochondrial and PI3K/AKT Signaling Pathways (original) (raw)
D. R. Bickers, and M. Athar. Novel approaches to chemoprevention of skin cancer. J. Dermatol.27:691–695 (2000). CASPubMed Google Scholar
D. K. Das, M. Sato, P. S. Ray, G. Maulik, R. M. Engleman, A. A. Bertelli, and A. Bertelli. Cardio protection of red wine: role of polyphenolic antioxidants. Drugs Exp. Clin. Res.25:115–120 (1999). CASPubMed Google Scholar
U. R. Pendurthi, F. Meng, N. Mackman, and L.V. Rao. Mechanism of resveratrol mediated suppression of tissue factor gene expression. Thromb. Haemost.87:155–162 (2002). CASPubMed Google Scholar
S. Banerjee, C. Bueso-Ramos, and B.B. Aggarwal. Suppression of 7, 12-dimethylbenz(a)anthracene-induced mammary carcinogenesis in rats by resveratrol: role of nuclear factor—Kappa B, cyclooxygenase 2, and matrix metalloprotease 9. Cancer Res.62:4945–4954 (2002). CAS Google Scholar
M. Jang, L. Cai, O. G. Udeani, K. V. Slowing, C. F. Thomas, C. W. W. Beecher, H. H. S. Fong, N. R. Farnsworth, A. D. Kinghorn, R. G. Mehta, R. C. Moon, and J. M. Pezzuto. Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science.275:218–220 (1997). doi:10.1126/science.275.5297.218. CASPubMed Google Scholar
M. V. Clement, J. L. Hirpara, and S. Pervaiz. Chemopreventive agent resveratrol, a natural product derived from grapes triggers Cd95 signalling-dependent apoptosis in human tumor cells. Blood.92:996–1002 (1998). CASPubMed Google Scholar
Y. J. Surh, Y. J. Hurh, J. Y. Kang, E. Lee, G. Kong, and S. J. Lee. Resveratrol,an antioxidant present in red wine, induces apoptosis in human promyelocytic leukemia (HL-60) cells. Cancer Lett.140:1–10 (1999). doi:10.1016/S0304-3835(99)00039-7. CASPubMed Google Scholar
Q. B. She, A. M. Bode, W. Y. Ma, N. Y. Chen, and Z. Dong. Resveratrol-induced activation of p53 and apoptosis is mediated by extracellular-signal-regulated protein kinases and p38 kinase. Cancer Res.61:1604–1610 (2001). CASPubMed Google Scholar
N. Ahmad, V. M. Adhami, F. Afaq, D. K. Feyes, and H. Mukhtar. Reveratrol causes WAF-1/p21-mediated G1-phase arrest of cell cycle and induction of apoptosis in human epidermoid carcinoma A431 cells. Clin. Cancer Res.7:1466–1473 (2001). CASPubMed Google Scholar
R. Joseph, and B. Alfanso. AKT plays a central role in tumorigenesis. Proc. Natl. Acad. Sci.98:10983–10985 (2001). doi:10.1073/pnas.211430998. Google Scholar
N. Kalra, P. Roy, S. Prasad, and Y. Shukla. Resveratrol induces apoptosis involving mitochondrial pathways in mouse skin tumorigenesis. Life Sci.82:348–358 (2008). doi:10.1016/j.lfs.2007.11.006. CASPubMed Google Scholar
A. Singh, and Y. Shukla. Anti tumor activity of diallyl sulphide on polycyclic aromatic hydrocarbon-induced mouse skin carcinogenesis. Cancer Lett.131:209–214 (1998). doi:10.1016/S0304-3835(98)00152-9. CASPubMed Google Scholar
I. A. Siddiqui, V. M. Adhami, F. Afaq, N. Ahmad, and H. Mukhtar. Modulation of phosphatidylinositol-3-kinase/protein kinase B- and mitogen-activated protein kinase-pathways by tea polyphenols in human prostate cancer cells. J. Cell Biochem.91:232–242 (2004). doi:10.1002/jcb.10737. CASPubMed Google Scholar
D. Johnson, and H. Lardy. In R. W. Estabrook, and M. E. Pullman (eds.), Methods in Enzymology, Oxidation and Phosphorylation, Vol. X, Academic, New York, 1967, pp. 94–96. Google Scholar
A. Arora, I. A. Siddiqui, and Y. Shukla. Modulation of p53 in 7,12-dimethylbenz[a] benzanthracene-induced skin tumors by diallyl sulphide in Swiss albino mice. Mol. Cancer Ther.11:1459–1466 (2004). Google Scholar
O. H. Lowry, N. K. Rosenbrough, and A. L. Farr. Protein measurement with folin phenol reagent. J. Biol. Chem.193:265–275 (1951). CASPubMed Google Scholar
S. W. Lowe, H. E. Ruley, T. Jacks, and D. E. Housman. p53-dependent apoptosis modulates the cytotoxicity of anticancer drugs. Cell.74:957–967 (1993). doi:10.1016/0092-8674(93)90719-7. CASPubMed Google Scholar
A. R. Clarke, S. Gledhill, M. L. Hooper, C. C. Bird, and A. H. Wyllie. p53 dependence of early apoptotic and proliferative responses within the mouse intestinal epithelium following gamma-irradiation. Oncogene.9:1767–1773 (1994). CASPubMed Google Scholar
G. J. Kapadia, M. A. Azuine, H. Tokuda, M. Takasaki, T. Mukainaka, T. Konoshima, and H. Nishino. Chemopreventive effectof resveratrol, sesamol, sesame oil and sunflower oil in the Epstein-barr virus early antigen activation assay and the mouse skin two stage carcinogenesis. Pharmacol. Res.45:499–505 (2002). doi:10.1006/phrs.2002.0992. CASPubMed Google Scholar
V. M. Adhami, F. Afaq, and N. Ahmad. Involvement of the Retinoblastoma (pRb)-E2F/DP pathway during antiproliferative effects of resveratrol in human epidermoid carcinoma (A431) Cells. Biochem. Biophys. Res. Commun.288:579–585 (2001). doi:10.1006/bbrc.2001.5819. CASPubMed Google Scholar
G. J. Soleas, L. Grass, P. D. Josephy, D. M. Goldberg, and E. P. Diamandis. A comparison of the anticarcinogenic properties of four red wine polyphenols. Clin. Biochem.35:119–124 (2002). doi:10.1016/S0009-9120(02)00275-8. CASPubMed Google Scholar
Z. D. Fu, Y. Cao, K. F. Wang, S. F. Xu, and R. Han. Chemopreventive effect of resveratrol to cancer. Ai Zheng.23:869–873 (2004). CASPubMed Google Scholar
J. F Kerr, A. H. Wyllie, and A. R. Currie. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer.26:239–257 (1972). Google Scholar
M. Mihara, S. Erster, A. Zaika, O. Petrenko, T. Chittenden, P. Pancake, and U. M. Moll. p53 has a direct apoptogenic role at the mitochondria. Mol. Cell.11:77–590 (2003). doi:10.1016/S1097-2765(03)00050-9. Google Scholar
H. J. Harn, L. I. Ho, C. A. Liu, and G. C. Liu. Down regulation of bcl-2 by p53 in nasopharyngeal carcinoma and lack of detection of its specific t (14;18) chromosomal translocation in fixed tissues. Histopathology. 28:317–323 (1996). doi:10.1046/j.1365-2559.1996.d01-431.x. CASPubMed Google Scholar
L. MacCarthy-Morrogh, A. Mouzakiti, P. Townsend, and M. Brimmell. Bcl-2-related proteins and cancer. Biochem. Soc. Trans.27:785–789 (1999). CASPubMed Google Scholar
S. Bursztajn, J. J. Feng, S. A. Berman, and A. R. Nanda. Poly (ADP-ribose) polymerase induction is an early signal of apoptosis in human neuroblastoma. Brain Res. Mol. Brain Res.76:363–376 (2000). doi:10.1016/S0169-328X(00)00026-7. CASPubMed Google Scholar
U. Kolthur-Seetharam, F. Dantzer, M. W. McBurney, G. de Murcia, and P. Sassone-Corsi. Control of AIF mediated cell death by the functional interplay of SIRT1 and PARP-1 in response to DNA damage. Cell cycle.5:873–877 (2006). CASPubMed Google Scholar
M. Castedo, J. L. Perfettini, T. Roumier, K. Andreau, R. Medema, and G. Kroemer. Cell death by mitotic catastrophe: a molecular definition. Oncogene.23:2825–2837 (2004). doi:10.1038/sj.onc.1207528. CASPubMed Google Scholar
B. B. Aggarwal, A. Bhardwaj, R. S. Aggarwal, N. P. Seeram, S. Shishodia, and Y. Takada. Role of resveratrol in prevention and therapy of cancer: preclinical and clinical trials. Anticancer Res.24:2783–2840 (2004). CASPubMed Google Scholar
T. O. Chan, S. E. Rittenhouse, and P. N. Tsichlis. AKT/PKB and other D3 phosphoinositide-regulated kinases: kinase activation by phosphoinositide-dependent phosphorylation. Annu. Rev. Biochem.68:965–1041 (1999). doi:10.1146/annurev.biochem.68.1.965. CASPubMed Google Scholar
R. Srivastava, A. Ratheesh, R. K. Gude, K. V. Rao, D. Panda, and G. Subrahmanyam. Resveratrol inhibits type II phosphatidylinositol turnover. Biochem. Pharmacol.70:1048–1045 (2005). doi:10.1016/j.bcp.2005.07.003. CASPubMed Google Scholar
T. M. Poolman, L. L. Ng, P. B. Farmer, and M. M. Manson. Inhibition of the respiratory burst by resveratrol in human monocytes: correlation with inhibition of PI3K signalling. Free Radic. Biol. Med.39:118–132 (2005). doi:10.1016/j.freeradbiomed.2005.02.036. CASPubMed Google Scholar
O. Rachid, and M. Alkhalaf. Resveratrol regulation of PI3K-AKT signaling pathway genes in MDA-MB-231 breast cancer cells. Cancer Genomics Proteomic.3:383–388 (2006). CAS Google Scholar
Y. Lu, H. Wang, and G. B. Mills. Targeting PI3K-AKT pathway for cancer therapy. Rev. Clin. Exp. Hematol.7:205–228 (2003). CASPubMed Google Scholar
L. Asnaghi, A. Calastretti, A. Bevilacqua, I. D’Agnano, G. Gatti, G. Canti, D. Delia, S. Capaccioli, and A. Nicolin. Bcl-2 phosphorylation and apoptosis activated by damaged microtubules require mTOR and are regulated by Akt. Oncogene.23:5781–5791 (2004). doi:10.1038/sj.onc.1207698. CASPubMed Google Scholar