Computational Models for Neglected Diseases: Gaps and Opportunities (original) (raw)
Hotez PJ, Molyneux DH, Fenwick A, Kumaresan J, Sachs SE, Sachs JD, et al. Control of neglected tropical diseases. N Engl J Med. 2007;357:1018–27. ArticleCASPubMed Google Scholar
Guiguemde WA, Shelat AA, Bouck D, Duffy S, Crowther GJ, Davis PH, et al. Chemical genetics of Plasmodium falciparum. Nature. 2010;465:311–5. ArticleCASPubMedPubMed Central Google Scholar
Ribeiro I, Sevcsik AM, Alves F, Diap G, Don R, Harhay MO, et al. New, improved treatments for Chagas disease: from the R&D pipeline to the patients. PLoS Negl Trop Dis. 2009;3:e484. ArticlePubMedPubMed Central Google Scholar
Bettiol E, Samanovic M, Murkin AS, Raper J, Buckner F, Rodriguez A. Identification of three classes of heteroaromatic compounds with activity against intracellular Trypanosoma cruzi by chemical library screening. PLoS Negl Trop Dis. 2009;3:e384. ArticlePubMedPubMed Central Google Scholar
Magarinos MP, Carmona SJ, Crowther GJ, Ralph SA, Roos DS, Shanmugam D, et al. TDR Targets: a chemogenomics resource for neglected diseases. Nucleic Acids Res. 2012;40:D1118–1127. ArticleCASPubMedPubMed Central Google Scholar
Gaulton A, Bellis LJ, Bento AP, Chambers J, Davies M, Hersey A, et al. ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res. 2012;40:D1100–1107. ArticleCASPubMedPubMed Central Google Scholar
Ekins S, Freundlich JS, Choi I, Sarker M, Talcott C. Computational databases, pathway and cheminformatics tools for tuberculosis drug discovery. Trends Microbiol. 2011;19:65–74. ArticleCASPubMedPubMed Central Google Scholar
Miller K. Where tuberculosis meets computation: 10 points of intersection. Biomed Comput Rev. 2012;20–28.
Ekins S, Reynolds R, Kim H, Koo M-S, Ekonomidis M, Talaue M, et al. Bayesian models leveraging bioactivity and cytotoxicity information for drug discovery. Chem Biol. 2013;20:370–8. ArticleCASPubMed Google Scholar
Sarker M, Talcott C, Madrid P, Chopra S, Bunin BA, Lamichhane G, et al. Combining cheminformatics methods and pathway analysis to identify molecules with whole-cell activity against Mycobacterium tuberculosis. Pharm Res. 2012;29:2115–27. ArticleCASPubMedPubMed Central Google Scholar
Duffy BC, Zhu L, Decornez H, Kitchen DB. Early phase drug discovery: cheminformatics and computational techniques in identifying lead series. Bioorg Med Chem. 2012;20:5324–42. ArticleCASPubMed Google Scholar
Krueger BA, Weil T, Schneider G. Comparative virtual screening and novelty detection for NMDA-GlycineB antagonists. J Comput Aided Mol Des. 2009;23:869–81. ArticleCASPubMed Google Scholar
Schames JR, Henchman RH, Siegel JS, Sotriffer CA, Ni H, McCammon JA. Discovery of a novel binding trench in HIV integrase. J Med Chem. 2004;47:1879–81. ArticleCASPubMed Google Scholar
Kubinyi H. Success stories of computer-aided design. In: Ekins S, editor. Computer applications in pharmaceutical research and development. Hoboken: John Wiley and Sons; 2006. p. 377–424. Chapter Google Scholar
Sundaramurthi JC, Brindha S, Reddy TB, Hanna LE. Informatics resources for tuberculosis–towards drug discovery. Tuberculosis (Edinburgh, Scotland). 2012;92:133–8. Article Google Scholar
Ekins S, Freundlich JS. Computational models for tuberculosis drug discovery. Methods Mol Biol (Clifton, NJ). 2013;993:245–62. ArticleCAS Google Scholar
Ekins S, Reynolds RC, Franzblau SG, Wan B, Freundlich JS, Bunin BA. Enhancing hit identification in mycobacterium tuberculosis drug discovery using validated dual-event Bayesian models. PLoS ONE_._ 2013 (in press).
Anderson JW, Sarantakis D, Terpinski J, Kumar TR, Tsai HC, Kuo M, et al. Novel diaryl ureas with efficacy in a mouse model of malaria. Bioorg Med Chem Lett. 2012;23:1022–5. ArticlePubMedPubMed Central Google Scholar
Alvarez G, Martinez J, Aguirre-Lopez B, Cabrera N, Perez-Diaz L, Gomez-Puyou MT, et al. New chemotypes as Trypanosoma cruzi triosephosphate isomerase inhibitors: a deeper insight into the mechanism of inhibition. J Enzym Inhib Med Chem. 2012. doi:10.3109/14756366.2013.765415.
Pires DE, de Melo-Minardi RC, da Silveira CH, Campos FF, Meira Jr W. aCSM: noise-free graph-based signatures to large-scale receptor-based ligand prediction. Bioinformatics (Oxford, England). 2013;29:855–61. ArticleCAS Google Scholar
Gunatilleke SS, Calvet CM, Johnston JB, Chen CK, Erenburg G, Gut J, et al. Diverse inhibitor chemotypes targeting Trypanosoma cruzi CYP51. PLoS Negl Trop Dis. 2012;6:e1736. ArticleCASPubMedPubMed Central Google Scholar
Zhang L, Fourches D, Sedykh A, Zhu H, Golbraikh A, Ekins S, et al. Discovery of novel antimalarial compounds enabled by QSAR-based virtual screening. J Chem Inf Model. 2013;53:475–92. ArticleCASPubMed Google Scholar
Bunin BA, Ekins S. Alternative business models for drug discovery. Drug Discov Today. 2011;16:643–5. ArticlePubMed Google Scholar
Gamo F-J, Sanz LM, Vidal J, de Cozar C, Alvarez E, Lavandera J-L, et al. Thousands of chemical starting points for antimalarial lead identification. Nature. 2010;465:305–10. ArticleCASPubMed Google Scholar
Ballell L, Bates RH, Young RJ, Alvarez-Gomez D, Alvarez-Ruiz E, Barroso V_, et al_. Fueling open-source drug discovery: 177 small-molecule leads against tuberculosis. ChemMedChem. 2013;8:313–21. Google Scholar
Reynolds RC, Ananthan S, Faaleolea E, Hobrath JV, Kwong CD, Maddox C, et al. High throughput screening of a library based on kinase inhibitor scaffolds against Mycobacterium tuberculosis H37Rv. Tuberculosis (Edinburgh, Scotland). 2012;92:72–83. ArticleCASPubMed Central Google Scholar
Maddry JA, Ananthan S, Goldman RC, Hobrath JV, Kwong CD, Maddox C, et al. Antituberculosis activity of the molecular libraries screening center network library. Tuberculosis (Edinburgh, Scotland). 2009;89:354–63. ArticleCASPubMed Central Google Scholar
Ananthan S, Faaleolea ER, Goldman RC, Hobrath JV, Kwong CD, Laughon BE, et al. High-throughput screening for inhibitors of Mycobacterium tuberculosis H37Rv. Tuberculosis (Edinburgh, Scotland). 2009;89:334–53. ArticleCASPubMed Central Google Scholar
Mackey ZB, Baca AM, Mallari JP, Apsel B, Shelat A, Hansell EJ, et al. Discovery of trypanocidal compounds by whole cell HTS of Trypanosoma brucei. Chem Biol Drug Des. 2006;67:355–63. ArticleCASPubMed Google Scholar
Engel JC, Ang KK, Chen S, Arkin MR, McKerrow JH, Doyle PS. Image-based high-throughput drug screening targeting the intracellular stage of Trypanosoma cruzi, the agent of Chagas’ disease. Antimicrob Agents Chemother. 2010;54:3326–34. ArticleCASPubMedPubMed Central Google Scholar
Abdulla MH, Ruelas DS, Wolff B, Snedecor J, Lim KC, Xu F, et al. Drug discovery for schistosomiasis: hit and lead compounds identified in a library of known drugs by medium-throughput phenotypic screening. PLoS Negl Trop Dis. 2009;3:e478. ArticlePubMedPubMed Central Google Scholar
Andriani G, Chessler AD, Courtemanche G, Burleigh BA, Rodriguez A. Activity in vivo of anti-Trypanosoma cruzi compounds selected from a high throughput screening. PLoS Negl Trop Dis. 2011;5:e1298. ArticleCASPubMedPubMed Central Google Scholar
Ferreira RS, Simeonov A, Jadhav A, Eidam O, Mott BT, Keiser MJ, et al. Complementarity between a docking and a high-throughput screen in discovering new cruzain inhibitors. J Med Chem. 2010;53:4891–905. ArticleCASPubMedPubMed Central Google Scholar
Galagan JE, Sisk P, Stolte C, Weiner B, Koehrsen M, Wymore F, et al. TB database 2010: overview and update. Tuberculosis (Edinburgh, Scotland). 2010;90:225–35. Article Google Scholar
Anishetty S, Pulimi M, Pennathur G. Potential drug targets in Mycobacterium tuberculosis through metabolic pathway analysis. Comput Biol Chem. 2005;29:368–78. ArticleCASPubMed Google Scholar
Raman K, Vashisht R, Chandra N. Strategies for efficient disruption of metabolism in Mycobacterium tuberculosis from network analysis. Mol Biosyst. 2009;5:1740–51. ArticleCASPubMed Google Scholar
Caspi R, Foerster H, Fulcher CA, Kaipa P, Krummenacker M, Latendresse M, et al. The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res. 2008;36:D623–631. ArticleCASPubMedPubMed Central Google Scholar
Huthmacher C, Hoppe A, Bulik S, Holzhutter HG. Antimalarial drug targets in Plasmodium falciparum predicted by stage-specific metabolic network analysis. BMC Syst Biol. 2010;4:120. ArticlePubMedPubMed Central Google Scholar
Plata G, Hsiao TL, Olszewski KL, Llinas M, Vitkup D. Reconstruction and flux-balance analysis of the Plasmodium falciparum metabolic network. Mol Syst Biol. 2010;6:408. ArticlePubMedPubMed Central Google Scholar
Fatumo S, Plaimas K, Mallm JP, Schramm G, Adebiyi E, Oswald M, et al. Estimating novel potential drug targets of Plasmodium falciparum by analysing the metabolic network of knock-out strains in silico. Infect Genet Evol. 2009;9:351–8. ArticleCASPubMed Google Scholar
Raman K, Bhat AG, Chandra N. A systems perspective of host-pathogen interactions: predicting disease outcome in tuberculosis. Mol Biosyst. 2010;6:516–30. ArticleCASPubMed Google Scholar
Wuchty S. Computational prediction of host-parasite protein interactions between P. falciparum and H. sapiens. PLoS ONE. 2011;6:e26960. ArticleCASPubMedPubMed Central Google Scholar
Davis FP, Barkan DT, Eswar N, McKerrow JH, Sali A. Host pathogen protein interactions predicted by comparative modeling. Protein Sci. 2007;16:2585–96. ArticleCASPubMed Google Scholar
Dyer MD, Murali TM, Sobral BW. Computational prediction of host-pathogen protein-protein interactions. Bioinformatics (Oxford, England). 2007;23:i159–166. ArticleCAS Google Scholar
Kushwaha SK, Shakya M. Protein interaction network analysis–approach for potential drug target identification in Mycobacterium tuberculosis. J Theor Biol. 2010;262:284–94. ArticleCASPubMed Google Scholar
Cui T, Zhang L, Wang X, He ZG. Uncovering new signaling proteins and potential drug targets through the interactome analysis of Mycobacterium tuberculosis. BMC Genomics. 2009;10:118. ArticleCASPubMedPubMed Central Google Scholar
Ramaprasad A, Pain A, Ravasi T. Defining the protein interaction network of human malaria parasite Plasmodium falciparum. Genomics. 2012;99:69–75. ArticleCASPubMed Google Scholar
Rodriguez-Soca Y, Munteanu CR, Dorado J, Pazos A, Prado-Prado FJ, Gonzalez-Diaz H. Trypano-PPI: a web server for prediction of unique targets in trypanosome proteome by using electrostatic parameters of protein-protein interactions. J Proteome Res. 2010;9:1182–90. ArticleCASPubMed Google Scholar
Ioerger TR, Koo S, No EG, Chen X, Larsen MH, Jacobs Jr WR, et al. Genome analysis of multi- and extensively-drug-resistant tuberculosis from KwaZulu-Natal, South Africa. PLoS ONE. 2009;4:e7778. ArticlePubMedPubMed Central Google Scholar
Gething PW, Patil AP, Smith DL, Guerra CA, Elyazar IR, Johnston GL, et al. A new world malaria map: Plasmodium falciparum endemicity in 2010. Malar J. 2011;10:378. ArticlePubMedPubMed Central Google Scholar
Gurarie D, King CH, Wang X. A new approach to modelling schistosomiasis transmission based on stratified worm burden. Parasitology. 2010;137:1951–65. ArticleCASPubMedPubMed Central Google Scholar
Raso G, Vounatsou P, McManus DP, Utzinger J. Bayesian risk maps for Schistosoma mansoni and hookworm mono-infections in a setting where both parasites co-exist. Geospat Health. 2007;2:85–96. PubMedPubMed Central Google Scholar
Crowther GJ, Shanmugam D, Carmona SJ, Doyle MA, Hertz-Fowler C, Berriman M, et al. Identification of attractive drug targets in neglected-disease pathogens using an in silico approach. PLoS Negl Trop Dis. 2010;4:e804. ArticlePubMedPubMed Central Google Scholar
Capriles PV, Guimaraes AC, Otto TD, Miranda AB, Dardenne LE, Degrave WM. Structural modelling and comparative analysis of homologous, analogous and specific proteins from Trypanosoma cruzi versus Homo sapiens: putative drug targets for chagas’ disease treatment. BMC Genomics. 2010;11:610. ArticlePubMedPubMed Central Google Scholar
Kinnings SL, Liu N, Buchmeier N, Tonge PJ, Xie L, Bourne PE. Drug discovery using chemical systems biology: repositioning the safe medicine Comtan to treat multi-drug and extensively drug resistant tuberculosis. PLoS Comput Biol. 2009;5:e1000423. ArticlePubMedPubMed Central Google Scholar
Kinnings SL, Xie L, Fung KH, Jackson RM, Xie L, Bourne PE. The Mycobacterium tuberculosis drugome and its polypharmacological implications. PLoS Comput Biol. 2010;6:e1000976. ArticlePubMedPubMed Central Google Scholar
Prathipati P, Ma NL, Manjunatha UH, Bender A. Fishing the target of antitubercular compounds: in silico target deconvolution model development and validation. J Proteome Res. 2009;8:2788–98. ArticleCASPubMed Google Scholar
Raman K, Yeturu K, Chandra N. targetTB: a target identification pipeline for Mycobacterium tuberculosis through an interactome, reactome and genome-scale structural analysis. BMC Syst Biol. 2008;2:109. ArticlePubMedPubMed Central Google Scholar
Jensen K, Plichta D, Panagiotou G, Kouskoumvekaki I. Mapping the genome of Plasmodium falciparum on the drug-like chemical space reveals novel anti-malarial targets and potential drug leads. Mol Biosyst. 2012;8:1678–85. ArticleCASPubMed Google Scholar
Durrant JD, Amaro RE, Xie L, Urbaniak MD, Ferguson MA, Haapalainen A, et al. A multidimensional strategy to detect polypharmacological targets in the absence of structural and sequence homology. PLoS Comput Biol. 2010;6:e1000648. ArticlePubMedPubMed Central Google Scholar
Krasky A, Rohwer A, Schroeder J, Selzer PM. A combined bioinformatics and chemoinformatics approach for the development of new antiparasitic drugs. Genomics. 2007;89:36–43. ArticleCASPubMed Google Scholar
Ballester PJ, Mangold M, Howard NI, Robinson RL, Abell C, Blumberger J, et al. Hierarchical virtual screening for the discovery of new molecular scaffolds in antibacterial hit identification. J R Soc Interface. 2012;9:3196–207. ArticleCASPubMedPubMed Central Google Scholar
Ekins S, Bradford J, Dole K, Spektor A, Gregory K, Blondeau D, et al. A collaborative database and computational models for tuberculosis drug discovery. Mol BioSyst. 2010;6:840–51. ArticleCASPubMed Google Scholar
Periwal V, Rajappan JK, Jaleel AU, Scaria V. Predictive models for anti-tubercular molecules using machine learning on high-throughput biological screening datasets. BMC Res Notes. 2011;4:504. ArticleCASPubMedPubMed Central Google Scholar
Scheich C, Szabadka Z, Vertessy B, Putter V, Grolmusz V, Schade M. Discovery of novel MDR-Mycobacterium tuberculosis inhibitor by new FRIGATE computational screen. PLoS ONE. 2011;6:e28428. ArticleCASPubMedPubMed Central Google Scholar
Lamichhane G, Freundlich JS, Ekins S, Wickramaratne N, Nolan S, Bishai WR. Essential metabolites of M. tuberculosis and their mimics. Ambio. 2011;2:e00301–00310. Google Scholar
Marrero-Ponce Y, Iyarreta-Veitia M, Montero-Torres A, Romero-Zaldivar C, Brandt CA, Avila PE, et al. Ligand-based virtual screening and in silico design of new antimalarial compounds using nonstochastic and stochastic total and atom-type quadratic maps. J Chem Inf Model. 2005;45:1082–100. ArticleCASPubMed Google Scholar
Freymann DM, Wenck MA, Engel JC, Feng J, Focia PJ, Eakin AE, et al. Efficient identification of inhibitors targeting the closed active site conformation of the HPRT from Trypanosoma cruzi. Chem Biol. 2000;7:957–68. ArticleCASPubMed Google Scholar
Castillo-Garit JA, Vega MC, Rolon M, Marrero-Ponce Y, Gomez-Barrio A, Escario JA, et al. Ligand-based discovery of novel trypanosomicidal drug-like compounds: in silico identification and experimental support. Eur J Med Chem. 2011;46:3324–30. ArticleCASPubMed Google Scholar
Khanna V, Ranganathan S. In silico approach to screen compounds active against parasitic nematodes of major socio-economic importance. BMC Bioinforma. 2011;12 Suppl 13:S25. ArticleCAS Google Scholar
Carmona SJ, Sartor P, Leguizamon MS, Campetella O, Aguero F. A computational pipeline for diagnostic biomarker discovery in the human pathogen Trypanosoma cruzi. BMC Bioinforma. 2010;11 Suppl 10:O11. Article Google Scholar
Carmona SJ, Sartor PA, Leguizamon MS, Campetella OE, Aguero F. Diagnostic peptide discovery: prioritization of pathogen diagnostic markers using multiple features. PLoS ONE. 2012;7:e50748. ArticleCASPubMedPubMed Central Google Scholar
Lin HH, Langley I, Mwenda R, Doulla B, Egwaga S, Millington KA, et al. A modelling framework to support the selection and implementation of new tuberculosis diagnostic tools. Int J Tuberc Lung Dis. 2011;15:996–1004. ArticlePubMed Google Scholar
Smith T, Ross A, Maire N, Chitnis N, Studer A, Hardy D, et al. Ensemble modeling of the likely public health impact of a pre-erythrocytic malaria vaccine. PLoS Med. 2012;9:e1001157. ArticlePubMedPubMed Central Google Scholar
Lee BY, Bacon KM, Shah M, Kitchen SB, Connor DL, Slayton RB. The economic value of a visceral leishmaniasis vaccine in Bihar state, India. Am J Trop Med Hyg. 2012;86:417–25. ArticlePubMed Google Scholar
de Araujo Pereira G, Louzada F, de Fatima Barbosa V, Ferreira-Silva MM, Moraes-Souza H. A general latent class model for performance evaluation of diagnostic tests in the absence of a gold standard: an application to Chagas disease. Computational Math methods Med. 2012;2012:487502. Google Scholar
Abu-Raddad LJ, Sabatelli L, Achterberg JT, Sugimoto JD, Longini Jr IM, Dye C, et al. Epidemiological benefits of more-effective tuberculosis vaccines, drugs, and diagnostics. Proc Natl Acad Sci U S A. 2009;106:13980–5. ArticleCASPubMedPubMed Central Google Scholar
Aandahl RZ, Reyes JF, Sisson SA, Tanaka MM. A model-based Bayesian estimation of the rate of evolution of VNTR loci in Mycobacterium tuberculosis. PLoS Comput Biol. 2012;8:e1002573. ArticlePubMedPubMed Central Google Scholar