Glucosinolates and the clubroot disease: defense compounds or auxin precursors? (original) (raw)
Agerbirk N, de Vos M, Kim JH, Jander G (2008) Indole glucosinolate breakdown an its biological effects. Phytochem Rev. doi:10.1007/s11101-008-9098-0
Alix K, Lariagon C, Delourme R, Manzanares-Dauleux MJ (2007) Exploiting natural genetic diversity and mutant resources of Arabidopsis thaliana to study the A. thalianaPlasmodiophora brassicae interaction. Plant Breed 126:218–221 Article Google Scholar
Ando S, Tsushima S, Tagiri A, Kamachi S, Konagaya K-I, Hagio T, Tabei Y (2006) Increase in BrAO1 gene expression and aldehyde oxidase activity during clubroot development in Chinese cabbage (Brassica rapa L.). Mol Plant Pathol 7:223–234 ArticleCAS Google Scholar
Archibald JM, Keeling PJ (2004) Actin and ubiquitin protein sequences support a Cercozoan/Foraminiferan ancestry for the Plasmodiophorid plant pathogens. J Eukaryot Microbiol 51:113–118 ArticlePubMedCAS Google Scholar
Barlier I, Kowalczyk M, Marchant A, Ljung K, Bhalerao R, Bennett M, Sandberg G, Bellini C (2000) The SUR2 gene of Arabidopsis thaliana encodes the cytochrome P450 CYP83B1, a modulator of auxin homeostasis. Proc Natl Acad Sci USA 97:14819–14824 ArticlePubMedCAS Google Scholar
Bartel B, Fink GR (1994) Differential regulation of an auxin-producing nitrilase gene family in Arabidopsis thaliana. Proc Natl Acad Sci USA 91:6649–6653 ArticlePubMedCAS Google Scholar
Bennett RN, Wenke T, Freudenberg B, Mellon FA, Ludwig-Müller J (2005) The tu8 mutation of Arabidopsis thaliana encoding a heterochromatin protein 1 causes defects in the induction of secondary metabolite biosynthesis. Plant Biol 7:348–357 ArticlePubMedCAS Google Scholar
Bischoff M, Löw R, Grsic S, Rausch T, Hilgenberg W, Ludwig-Müller J (1995) Infection with the obligate biotroph Plasmodiophora brassicae, the causal agent of the clubroot disease, does not affect expression of NIT1/2-related nitrilases in roots of Chinese cabbage. J Plant Physiol 147:341–345 CAS Google Scholar
Bones AM, Rossiter JT (1996) The myrosinase-glucosinolate system, its organisation and biochemistry. Physiol Plant 97:194–208 ArticleCAS Google Scholar
Brodmann D, Schuller A, Ludwig-Müller J, Aeschbacher RA, Wiemken A, Boller T, Wingler A (2002) Induction of trehalase in Arabidopsis plants infected with the trehalose-producing pathogen Plasmodiophora brassicae. Mol Plant Microbe Interact 15:693–700 ArticlePubMedCAS Google Scholar
Buczacki ST (1983) Plasmodiophora. An interrelationship between biological and practical problems. In: Buczacki ST (ed) Zoosporic plant pathogens. Academic Press, London, pp 161–191 Google Scholar
Bulman S, Siemens J, Ridgeway H, Eady C, Conner A (2006) Identification of genes from the obligate intracellular plant pathogen, Plasmodiophora brassicae. FEMS Microbiol Lett 264:198–204 ArticlePubMedCAS Google Scholar
Burow M, Zhang ZP, Ober JA, Lambrix VM, Wittstock U, Gershenzon J, Kliebenstein DJ (2008) ESP and ESM1 mediate indol-3-acetonitrile production from indol-3-ylmethyl glucosinolate in Arabidopsis. Phytochemistry 69:663–671 ArticlePubMedCAS Google Scholar
Butcher DN, El-Tigani S, Ingram DS (1974) The role of indole glucosinolates in the club root disease of the cruciferae. Physiol Plant Pathol 4:127–140 ArticleCAS Google Scholar
Butcher DN, Searle LM, Mousdale DMA (1976) The role of glucosinolates in the club root disease of the cruciferae. Med Fac Landbouw Rijk 41/2:525–532 Google Scholar
Cao T, Srivastava S, Rahman MH, Kav NNV, Hotte N, Deyholos MK, Strelkov SE (2007) Proteome-level changes in the roots of Brassica napus as a result of Plasmodiophora brassicae infection. Plant Sci 174:97–115 Google Scholar
Cheah LH, Kent G, Gowers S (2001) Brassica crops and a Streptomyces sp. as potential biocontrol for clubroot of Brassicas. NZ Plant Prot 54:80–83 Google Scholar
Cheah LH, Gowers S, Marsh AT (2006) Clubroot control using Brassica break crops. Acta Hort 706:329–332 Google Scholar
Chen S, Glawischnig E, Jorgensen K, Naur P, Jorgensen B, Olsen CE, Hansen CH, Rasmussen H, Pickett JA, Halkier BA (2003) CYP79F1 and CYP79F2 have distinct functions in the biosynthesis of aliphatic glucosinolates in Arabidopsis. Plant J 33:923–937 ArticlePubMedCAS Google Scholar
Chong C, Chiang MS, Crete R (1981) Thiocyanate ion content in relation to clubroot disease severity in cabbages. HortScience 16:663–664 CAS Google Scholar
Chong C, Chiang MS, Crete R (1984) Studies in glucosinolates in clubroot resistant selections and susceptible commercial cultivars of cabbages. Euphytica 34:65–73 Article Google Scholar
Devos S, Vissenberg K, Verbelen J-P, Prinsen E (2005) Infection of Chinese cabbage by Plasmodiophora brassicae leads to a stimulation of plant growth: impacts on cell wall metabolism and hormonal balance. New Phytol 166:241–250 ArticlePubMedCAS Google Scholar
Devos S, Laukens K, Deckers P, Van Der Straeten D, Beeckman T, Inze D, van Onckelen H, Witters E, Prinsen E (2006) A hormone and proteome approach to picturing the initial metabolic events during Plasmodiophora brassicae infection on Arabidopsis. Mol Plant Microbe Interact 19:1431–1433 ArticlePubMedCAS Google Scholar
Donald EC, Porter LJ, Faggian R, Lancaster RA (2006) An integrated approach to the control of clubroot in vegetable Brassica crops. Acta Hortic 706:283–300 CAS Google Scholar
Eriksson S, Andreasson E, Ekbom B, Graner G, Pontoppidan B, Taipalensuu J, Zhang J, Rask L, Meijer J (2002) Complex formation of myrosinase isoenzymes in oilseed rape seeds are dependent on the presence of myrosinase-binding proteins. Plant Physiol 129:1592–1599 ArticlePubMedCAS Google Scholar
Evans JL, Scholes JD (1995) How does clubroot alter the regulation of carbon metabolism in its host? Asp Appl Biol 42:125–132 Google Scholar
Fuchs H, Sacristan MD (1996) Identification of a gene in Arabidopsis thaliana controlling resistance to clubroot (Plasmodiophora brassicae) and characterization of the resistance response. Mol Plant Microbe Interact 9:91–97 CAS Google Scholar
Gigolashvili T, Berger B, Mock H-P, Müller C, Weisshaar B, Flügge U-I (2007a) The transcription factor HIG1/MYB51 regulates indolic glucosinolate biosynthesis in Arabidopsis thaliana. Plant J 50:886–901 ArticlePubMedCAS Google Scholar
Gigolashvili T, Yatusevich R, Berger B, Müller C, Flügge U-I (2007b) The R2R3-MYB transcription factor HAG1/MYB28 is a regulator of methionine-derived glucosinolate biosynthesis in Arabidopsis thaliana. Plant J 51:247–261 ArticlePubMedCAS Google Scholar
Gigolashvili T, Engqvist M, Yatusevich R, Müller C, Flügge U-I (2008) HAG2/MYB76 and HAG3/MYB29 exert a specific and coordinated control on the regulation of aliphatic glucosinolate biosynthesis in Arabidopsis thaliana. New Phytol 177:627–642 PubMedCAS Google Scholar
Gigolashvili T, Berger B, Flügge U-I (this issue) Specific and coordinated control of indolic and aliphatic glucosinolate biosynthesis by R2R3-MYB transcription factors in Arabidopsis thaliana. Phytochem Rev
Grsic S, Sauerteig S, Neuhaus K, Albrecht M, Rossiter J, Ludwig-Müller J (1998) Physiological analysis of transgenic Arabidopsis thaliana plants expressing one nitrilase isoform in sense or antisense direction. J Plant Physiol 153:446–456 CAS Google Scholar
Grsic S, Kirchheim B, Pieper K, Fritsch M, Hilgenberg W, Ludwig-Müller J (1999) Induction of auxin biosynthetic enzymes by jasmonic acid and in clubroot diseased Chinese cabbage plants. Physiol Plant 105:521–531 ArticleCAS Google Scholar
Grsic-Rausch S, Kobelt P, Siemens J, Bischoff M, Ludwig-Müller J (2000) Expression and localization of nitrilase during symptom development of the clubroot disease in Arabidopsis thaliana. Plant Physiol 122:369–378 ArticlePubMedCAS Google Scholar
Grubb CD, Abel S (2006) Glucosinolate metabolism and its control. Trends Plant Sci 11:89–100 ArticlePubMedCAS Google Scholar
Grubb CD, Zipp BJ, Ludwig-Müller J, Masuno MN, Molinski TF, Abel S (2004) Arabidopsis glucosyltransferase UGT74B1 functions in glucosinolate biosynthesis and auxin homeostasis. Plant J 40:893–908 ArticlePubMedCAS Google Scholar
Halkier BA, Gershenzon J (2006) Biology and biochemistry of glucosinolates. Annu Rev Plant Biol 57:303–333 ArticlePubMedCAS Google Scholar
Haughn GW, Davin L, Giblin M, Underhill EW (1991) Biochemical genetics of plant secondary metabolites in Arabidopsis thaliana. The Glucosinolates. Plant Physiol 97:217–226 ArticlePubMedCAS Google Scholar
Helmlinger J, Rausch T, Hilgenberg W (1987) A soluble protein factor from Chinese cabbage converts indole-3-acetaldoxime to IAA. Phytochemistry 26:615–618 ArticleCAS Google Scholar
Hillebrand H, Bartling D, Weiler EW (1998) Structural analysis of the nit2/nit1/nit3 gene cluster encoding nitrilases, enzymes catalyzing the terminal activation step in indole-3-acetic acid biosynthesis in Arabidopsis thaliana. Plant Mol Biol 36:89–99 ArticlePubMedCAS Google Scholar
Hirai M (2006) Genetic analysis of clubroot resistance in Brassica crops. Breed Sci 56:223–229 Article Google Scholar
Hull AK, Vij R, Celenza JL (2000) Arabidopsis cytochrome P450s that catalyze the first step of tryptophan-dependent indole-3-acetic acid biosynthesis. Proc Natl Acad Sci USA 97:2379–2384 ArticlePubMedCAS Google Scholar
Ingram DS, Tommerup IC (1972) The life history of Plasmodiophora brassicae Woron. Proc Royal Soc Lond B 180:103–112 Google Scholar
Inzé D, Follin A, van Lijsebettens M, Simoens C, Genetello M, van Montagu M, Schell J (1984) Genetic analyses of the individual T-DNA genes of Agrobacterium tumefaciens: Further evidence that two genes are involved in indole-3-acetic acid synthesis. Mol Gen Genet 194:265–274 Article Google Scholar
Ishikawa T, Okazaki K, Kuroda H, Itoh K, Mitsui T, Hori H (2007a) Molecular cloning of Brassica rapa nitrilases and their expression during clubroot development. Mol Plant Pathol 8:623–637 ArticleCAS Google Scholar
Ishikawa T, Kuroda H, Okazaki K, Itoh K, Mitsui T, Hori H (2007b) Evaluation of roles of amidase which converts indole-3-acetamide to indole-3-acetic acid, in formation of clubroot in turnip. Bull Facul Agric Niigata Univ 60:53–60 CAS Google Scholar
Kim JH, Durrett TP, Last RL, Jander G (2004) Characterization of the Arabidopsis TU8 glucosinolate mutation, an allele of TERMINAL FLOWER2. Plant Mol Biol 54:671–682 ArticlePubMedCAS Google Scholar
Klewer A, Luerßen H, Graf H, Siemens J (2001) Restriction Fragment Length Polymorphism markers to characterize Plasmodiophora brassicae single-spore isolates with different virulence patterns. J Phytopathol 149:121–127 ArticleCAS Google Scholar
Kobelt P (2000) Die Verbreitung von sekundären Plasmodien von Plasmodiophora brassicae (Wor.) im Wurzelgewebe von Arabidopsis thaliana nach immunhistologischer Markierung des plasmodialen Zytoskeletts. Dissertation, Freie Universität Berlin, Germany
Kroymann J, Textor S, Tokuhisa JG, Falk KL, Bartram S, Gershenzon J, Mitchell-Olds T (2001) A gene controlling variation in Arabidopsis glucosinolate composition is part of the methionine chain elongation pathway. Plant Physiol 127:1077–1088 ArticlePubMedCAS Google Scholar
Lambrix V, Reichelt M, Mitchell-Olds T, Kliebenstein DJ, Gershenzon J (2001) The Arabidopsis epithiospecifier protein promotes the hydrolysis of glucosinolates to nitriles and influences Trichoplusia ni herbivory. Plant Cell 13:2793–2807 ArticlePubMedCAS Google Scholar
Ludwig-Müller J, Hilgenberg W (1990) Conversion of indole-3-acetaldoxime to indole-3-acetonitrile by plasma membranes from Chinese cabbage. Physiol Plant 79:311–318 Article Google Scholar
Ludwig-Müller J, Cohen JD (2002) Identification and quantification of three active auxins in different tissues of Tropaeolum majus. Physiol Plant 115:320–329 ArticlePubMed Google Scholar
Ludwig-Müller J, Schuller A (2008) What can we learn from clubroots: alterations in host roots and hormone homeostasis caused by Plasmodiophora brassicae. Eur J Plant Pathol (in press)
Ludwig-Müller J, Bendel U, Thermann P, Ruppel M, Epstein E, Hilgenberg W (1993) Concentrations of indole-3-acetic acid in plants of tolerant and susceptible varieties of Chinese cabbage infected with Plasmodiophora brassicae Woron. New Phytol 125:763–769 Article Google Scholar
Ludwig-Müller J, Kasperczyk N, Schubert B, Hilgenberg W (1995) Identification of salicylic acid in Chinese cabbage and its possible role during root infection with Plasmodiophora brassicae. Current Top Phytochem 14:39–45 Google Scholar
Ludwig-Müller J, Epstein E, Hilgenberg W (1996) Auxin-conjugate hydrolysis in Chinese cabbage: characterization of an amidohydrolase and its role during the clubroot disease. Physiol Plant 97:627–634 Article Google Scholar
Ludwig-Müller J, Schubert B, Pieper K, Ihmig S, Hilgenberg W (1997) Glucosinolate content in susceptible and tolerant Chinese cabbage varieties during the development of the clubroot disease. Phytochemistry 44:407–414 Article Google Scholar
Ludwig-Müller J, Pieper K, Ruppel M, Cohen JD, Epstein E, Kiddle G, Bennett R (1999a) Indole glucosinolate and auxin biosynthesis in Arabidopsis thaliana L. glucosinolate mutants and the development of the clubroot disease. Planta 208:409–419 ArticlePubMed Google Scholar
Ludwig-Müller J, Ihmig S, Bennett R, Kiddle G, Ruppel M, Hilgenberg W (1999b) The host range of Plasmodiophora brassicae and its relationship to endogenous glucosinolate content. New Phytol 141:443–458 Article Google Scholar
Matile P (1975) “Die Senfölbombe”: Zur Kompartimentierung des Myrosinasesystems. Biochem Physiol Pflanz 175:722–731 Google Scholar
Mattusch P (1994) Kohlhernieanfälligkeit eines Chinakohlsortiments. Gemüse 30:357–359 Google Scholar
Mikkelsen MD, Naur P, Halkier BA (2004) Arabidopsis mutants in the C-S lyase of glucosinolate biosynthesis establish a critical role for indole-3-acetaldoxime in auxin homeostasis. Plant J 37:770–777 ArticlePubMedCAS Google Scholar
Mühlenberg I, Schuller A, Siemens J, Kobelt P, Ludwig-Müller J (2002) Plasmodiophora brassicae, the causal agent of clubroot disease, may penetrate plant cell walls via cellulase. Plant Protect Sci 38:69–72 Google Scholar
Müller P, Hilgenberg W (1986) Cytokinin biosynthesis by plasmodia of Plasmodiophora brassicae. Physiol Plant 66:245–250 Article Google Scholar
Mullin WJ, Proudfoot KG, Collins MJ (1980) Glucosinolate content and clubroot of rutabaga and turnip. Can J Plant Sci 60:605–612 ArticleCAS Google Scholar
Nafisi M, Goregaoker S, Botanga CJ, Glawischnig E, Olsen CE, Halkier BA, Glazebrook J (2007) Arabidopsis cytochrome P450 monooxygenase 71A13 catalyzes the conversion of indole-3-acetaldoxime in camalexin synthesis. Plant Cell 19:2039–2052 ArticlePubMedCAS Google Scholar
Naur P, Petersen BL, Mikkelsen MD, Bak S, Rasmussen H, Olsen CE, Halkier BA (2003) CYP83A1 and CYP83B1, two nonredundant Cytochrome P450 enzymes metabolizing oximes in the biosynthesis of glucosinolates in Arabidopsis. Plant Physiol 133:63–72 ArticlePubMedCAS Google Scholar
Neuhaus K, Grsic-Rausch S, Sauerteig S, Ludwig-Müller J (2000) Arabidopsis plants transformed with nitrilase 1 or 2 in antisense direction are delayed in clubroot development. J Plant Physiol 156:756–761 CAS Google Scholar
Ockendon JG, Buczacki ST (1979) Indole glucosinolate incidence and clubroot susceptibility of three cruciferous weeds. Trans Br Mycol Soc 72:156–157 ArticleCAS Google Scholar
Pedras MSC, Nycholat CM, Montaut S, Xu Y, Khan AQ (2002) Chemical defenses of crucifers: elicitation and metabolism of phytoalexins and indole-3-acetonitrile in brown mustard and turnip. Phytochemistry 59:611–625 ArticlePubMedCAS Google Scholar
Piao ZY, Deng YQ, Choi SR, Park YJ, Lim YP (2004) SCAR and CAPS mapping of CRb, a gene conferring resistance to Plasmodiophora brassicae in Chinese cabbage (Brassica rapa ssp. pekinensis). Theor Appl Genet 108:1458–1465 ArticlePubMedCAS Google Scholar
Pollmann S, Neu D, Weiler EW (2003) Molecular cloning and characterization of an amidase from Arabidopsis thaliana capable of converting indole-3-acetamide into the plant growth hormone, indole-3-acetic acid. Phytochemistry 62:293–300 ArticlePubMedCAS Google Scholar
Rausch T, Mattusch P, Hilgenberg W (1981a) Influence of club root disease on the growth kinetics of Chinese cabbage. Phytopathol Z 102:28–33 Article Google Scholar
Rausch T, Butcher DN, Hilgenberg W (1981b) Nitrilase activity in clubroot diseased plants. Physiol Plant 52:467–470 ArticleCAS Google Scholar
Rausch T, Butcher DN, Hilgenberg W (1983) Indole-3-methylglucosinolate biosynthesis and metabolism in clubroot diseased plants. Physiol Plant 58:93–100 ArticleCAS Google Scholar
Rehn F, Arbeiter A, Galfe N, Reinhardt S, Siemens J (2006) Monogenic inherited clubroot resistance in Arabidopsis thaliana is dependent on expression of the gene sgt1a. In: Abstracts of Brassica 2006. Wageningen, The Netherlands, September 2006
Reintanz B, Lehnen M, Reichelt M, Gershenzon J, Kowalczyk M, Sandberg G, Godde M, Uhl R, Palme K (2001) bus, a bushy Arabidopsis CYP79F1 knockout mutant with abolished synthesis of short-chain aliphatic glucosinolates. Plant Cell 13:351–367 ArticlePubMedCAS Google Scholar
Rocherieux J, Glory P, Giboulot A, Boury S, Barbeyron G, Thomas G, Manzanares-Dauleux MJ (2004) Isolate-specific and broad-spectrum QTLs are involved in the control of clubroot in Brassica oleracea. Theor Appl Genet 108:1555–1563 ArticlePubMedCAS Google Scholar
Rodman JE (1991a) A taxonomic analysis of glucosinolate-producing plants. Part 1: Phenetics. Syst Bot 16:598–618 Article Google Scholar
Rodman JE (1991b) A taxonomic analysis of glucosinolate-producing plants. Part 2: Cladistics. Syst Bot 16:619–629 Article Google Scholar
Saito M, Kubo N, Matsumoto S, Suwabe K, Tsukada M, Hirai M (2006) Fine mapping of the clubroot resistance gene, Crr3, in Brassica rapa. Theor Appl Genet 114:81–91 ArticlePubMedCAS Google Scholar
Seo M, Akaba S, Oritani T, Delarue M, Bellini C, Caboche M, Koshiba T (1998) Higher activity of an aldehyde oxidase in the auxin-overproducing superroot1 mutant of Arabidopsis thaliana. Plant Physiol 116:687–693 ArticlePubMedCAS Google Scholar
Siemens J, Nagel M, Ludwig-Müller J, Sacristán MD (2002) The interaction of Plasmodiophora brassicae and Arabidopsis thaliana: Parameters for disease quantification and screening of mutant lines. J Phytopathol 150:592–605 Article Google Scholar
Siemens J, Keller I, Sarx J, Kunz S, Schuller A, Nagel W, Schmülling T, Parniske M, Ludwig-Müller J (2006) Transcriptome analysis of Arabidopsis clubroots indicate a key role for cytokinins in disease development. Mol Plant Microbe Interact 19:480–494 ArticlePubMedCAS Google Scholar
Siemens J, Glawischnig E, Ludwig-Müller J (2008) Indole glucosinolates and camalexin do not influence the development of the clubroot disease in Arabidopsis thaliana. J Phytopathol. doi:10.1111/j.1439-0434.2007.01359.x
Skirycz A, Reichelt M, Burow M, Birkemeyer C, Rolcik J, Kopka J, Zanor MI, Gershenzon J, Strnad M, Szopa J, Müller-Röber B, Witt I (2006) DOF transcription factor AtDof1.1 (OBP2) is part of a regulatory network controlling glucosinolate biosynthesis in Arabidopsis. Plant J 47:10–24 ArticlePubMedCAS Google Scholar
Textor S, de Kraker J-W, Hause B, Gershenzon J, Tokuhisa JG (2007) MAM3 catalyzes the formation of all aliphatic glucosinolate chain lengths in Arabidopsis. Plant Physiol 144:60–71 ArticlePubMedCAS Google Scholar
Ugajin T, Takita K, Takahashi H, Muraoka S, Tada T, Mitsui T, Hayakawa T, Ohyama T, Hori H (2003) Increase in indole-3-acetic acid (IAA) level and nitrilase activity in turnips induced by Plasmodiophora brassicae infection. Plant Biotechnol 20:215–220 CAS Google Scholar
Voorrips RE (1995) Plasmodiophora brassicae: aspects of pathogenesis and resistance in Brassica oleracea. Euphytica 83:139–146 Article Google Scholar
Zhao Y, Christensen SK, Fankhauser C, Cashman JR, Cohen JD, Weigel D, Chory C (2001) A role for flavin monooxygenase-like enzymes in auxin biosynthesis. Science 291:306–309 ArticlePubMedCAS Google Scholar
Zhao Y, Hull AK, Gupta NR, Goss KA, Alonso J, Ecker JE, Normanly J, Chory J, Celenza JC (2002) Trp-dependent auxin biosynthesis in Arabidopsis: involvement of cytochrome P450s CYP79B2 and CYP79B3. Genes Dev 16:3100–3112 ArticlePubMedCAS Google Scholar
Zhou N, Tootle TL, Glazebrook J (1999) ArabidopsisPAD3, a gene required for camalexin biosynthesis, encodes a putative cytochrome P450 monooxygenase. Plant Cell 11:2419–2428 ArticlePubMedCAS Google Scholar