Synergistic interactions between Bradyrhizobium japonicum and the endophyte Stenotrophomonas rhizophila and their effects on growth, and nodulation of soybean under salt stress (original) (raw)
Alavi P, Starcher MR, Zachow C, Müller H, Berg G (2013) Root-microbe systems: the effect and mode of interaction of stress protecting agent (SPA) Stenotrophomonas rhizophila DSM14405T. Front Plant Sci 4:141 ArticlePubMedPubMed Central Google Scholar
Al-Whaibi MH, Siddiqui MH, Al-Munqadhi BMA, Sakran AM, Ali HM, Basalah MO (2012) Influence of plant growth regulators on growth performance and photosynthetic pigments status of Eruca sativa Mill. J Med Plants Res 6:1948–1954 CAS Google Scholar
Argaw A (2012) Evaluation of co-inoculation of Bradyrhizobium japonicum and phosphate solubilizing Pseudomonas spp. effect on soybean (Glycine max L. (Merr.)) in Assossa Area. J Agric Sci Tech 14:213–224 CAS Google Scholar
Bano A, Yasmeen S (2010) Role of phytohormones under induced drought stress in wheat. Pak J Bot 42(4):2579–2587 CAS Google Scholar
Berg G, Martinez JL (2015) Friends or foes: can we make a distinction between beneficial and harmful strains of the Stenotrophomonas maltophilia complex? Front Microbiol 6:241 PubMedPubMed Central Google Scholar
Berg G, Egamberdieva D, Lugtenberg B, Hagemann M (2010) Symbiotic plant-microbe interactions: stress protection, plant growth promotion and biocontrol by Stenotrophomonas. In: Seckbach J, Grube M (eds) Symbioses and stress, cellular origin, life in extreme habitats and astrobiology, Springer-Verlag 17(4):445–460
Berg G, Alavi M, Schmidt CS, Zachow C, Egamberdieva D, Kamilova F, Lugtenberg B (2013) Biocontrol and osmoprotection for plants under saline conditions. In: Frans J. de Bruijn (ed), Molecular microbial ecology of the rhizosphere, Wiley -Blackwell, USA
Beringer JB (1974) R factor transfer in Rhizobium leguminosarum. J Gen Microbiol 84:188–198 CASPubMed Google Scholar
Bianco C, Defez R (2009) Medicago truncatula improves salt tolerance when nodulated by an indole-3-acetic acid-overproducing Sinorhizobium meliloti strain. J Exp Bot 60:3097–3107 ArticleCASPubMed Google Scholar
Bruning B, Rozema J (2013) Symbiotic nitrogen fixation in legumes: perspectives for saline agriculture. Environ Exp Bot 92:134–143 ArticleCAS Google Scholar
Dardanelli MS, De Cordoba FJF, Espuny MR, Carvajal MAR, Diaz MES, Serrano AMG, Okon Y, Megias M (2008) Effect of Azospirillum brasilense coinoculated with Rhizobium on Phaseolus vulgaris flavonoids and Nod factor production under salt stress. Soil Biol Biochem 40:2713–2721 ArticleCAS Google Scholar
Dwevedi A, Kayastha AM (2011) Soybean: a multifaceted legume with enormous economic capabilities, soybean - biochemistry, chemistry and physiology, Tzi-Bun Ng (Ed.) In Tech
Egamberdieva D (2009) Alleviation of salt stress by plant growth regulators and IAA producing bacteria in wheat. Acta Phys Plant 31:861–864 ArticleCAS Google Scholar
Egamberdieva D (2012) Pseudomonas chlororaphis: a salt tolerant bacterial inoculant for plant growth stimulation under saline soil conditions. Acta Phys Plant 34:751–756 ArticleCAS Google Scholar
Egamberdieva D, Kucharova Z (2009) Selection for root colonising bacteria stimulating wheat growth in saline soils. Biol Fertil Soils 45:561–573 Article Google Scholar
Egamberdieva D, Berg G, Lindstrom K, Rasanen L (2010a) Root colonizing Pseudomonas spp. improve growth and symbiosis performance of fodder galega (Galega orientalis LAM) grown in potting soil. Eur J Soil Biol 46(3–4):269–272 ArticleCAS Google Scholar
Egamberdieva D, Renella G, Wirth S, Islam R (2010b) Secondary salinity effects on soil microbial biomass. Biol Fertil Soils 46(5):445–449 ArticleCAS Google Scholar
Egamberdieva D, Kucharova Z, Davranov K, Berg G, Makarova N, Azarova T, Chebotar V, Tikhonovich I, Kamilova F, Validov S, Lugtenberg B (2011) Bacteria able to control foot and root rot and to promote growth of cucumber in salinated soils. Biol Fertil Soils 47:197–205 ArticleCAS Google Scholar
Egamberdieva D, Berg G, Lindström K, Räsänen LA (2013) Alleviation of salt stress of symbiotic Galega officinalis L. (goat's rue) by co-inoculation of Rhizobium with root colonizing Pseudomonas. Plant Soil 369(1):453–465 ArticleCAS Google Scholar
Egamberdieva D, Shurigin V, Gopalakrishnan S, Sharma R (2014) Growth and symbiotic performance of chickpea (Cicer arietinum) cultivars under saline soil conditions. J Biol Chem Res 31(1):333–341 Google Scholar
Egamberdiyeva D, Gafurova L, Islam KR (2007) Salinity effects on irrigated soil chemical and biological properties in the syrdarya basin of Uzbekistan. In: Lal R, Sulaimanov M, Stewart B, Hansen D, Doraiswamy P (eds) Climate change and terrestrial c sequestration in Central Asia. Taylor-Francis, New York, pp 147–162 Chapter Google Scholar
Essa TA (2002) Effect of salinity on growth and nutrient composition of three soybean (Glycine max L.) cultivars. J Agric Crop Sci 188:86–93 ArticleCAS Google Scholar
Estévez J, Dardanelli MS, Megias M, Rodríguez-Navarro DN (2009) Symbiotic performance of common bean and soybean co inoculated with rhizobia and Chryseobacterium balustinum Aur9 under moderate saline conditions. Symbiosis 49(1):29–36 Article Google Scholar
FAOSTAT (2013) FAOSTAT database, Food and Agriculture Organization of the United Nations. http://faostat.fao.org/
Garg N, Chandel S (2011) Effect of mycorrhizal inoculation on growth, nitrogen fixation and nutrient uptake in Cicer arietinum L. under salt stress. Turk J Agric For 35:205–214 CAS Google Scholar
Golezani KG, Yengabad FM (2012) Physiological responses of lentil (Lens culinaris Medik.) to salinity. Int J Agric Crop Sci 4(20):1531–1535 Google Scholar
Gunawardena SFBN, Danso SKA, Zapata F (1992) Phosphorus requirement and nitrogen accumulation by three mung bean (Vigna radiata (L.) Welzek) cultivars. Plant Soil 147:267–274 ArticleCAS Google Scholar
Haas D, Défago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307–319 ArticleCASPubMed Google Scholar
Hamayun M, Khan SA, Shinwari ZK, Khan AK, Ahmad N, Lee IJ (2010) Effect of polyethylene glycol induced drought stress on physio-hormonal attributes of soybean. Pak J Bot 42:977–986 CAS Google Scholar
Hashem FM, Swelim DM, Kuykendall LD, Mohamed AI, Abdel-Wahab SM, Hegazi NI (1998) Identification and characterization of salt and thermo-tolerant Leucaena nodulating Rhizobium strains. Biol Fertil Soil 27:335–341 ArticleCAS Google Scholar
Hellsten A, Huss-Danell K (2001) Interaction effects of nitrogen and phosphorus on nodulation in red clover (Trifolium pretense L.). Acta Agric Scand Sect B Soil Plant Sci 50:135–142 Google Scholar
Hiz MC, Canher B, Niron H, Turet M (2014) Transcriptome analysis of salt tolerant common bean (Phaseolus vulgaris L.) under saline conditions. PLoS One 9(3), e92598 ArticlePubMedPubMed Central Google Scholar
Imai A, Matsuyama T, Hanzawa Y, Akiyama T, Tamaoki M, Saji H (2004) Spermidine synthase genes are essential for survival of Arabidopsis. Plant Physiol 135:1565–1573 ArticleCASPubMedPubMed Central Google Scholar
Imamul Huq SM, Larher F (1983) Osmoregulation in higher plants. Effect of NaCl salinity on non-nodulated Phaseolus aureus L. II. Changes in orgnaic solutes. New Phytol 93:209–216 Article Google Scholar
Kaymakanova M (2009) Effect of salinity on germination and seed physiology in bean (Phaseolus vulgaris L.). Biotechnol Equip 23:326–329 Article Google Scholar
Khurana AS, Sharma P (2000) Effect of dual inoculation of phosphate solubilizing bacteria, Bradyrhizobium sp. and phosphorus on nitrogen fixation and yield of chickpea. Indian J Pulses Res 13:66–67 Google Scholar
Lynch JP, Epstein E, Lauchli A, Weight GE (1990) An automated greenhouse sand culture system suitable for studies of P nutrition. Plant Cell Environ 13:547–554 ArticleCAS Google Scholar
Ma W, Guinel FC, Glick BR (2003) Rhizobium leguminosarum biovar. viciae 1-amino cyclopropane-1-carboxylate deaminase promotes nodulation of pea plants. Appl Environ Microbiol 69:4396–4402 ArticleCASPubMedPubMed Central Google Scholar
Molla AH, Shamsuddin ZH, Halimi MS, Morziah M, Puteh AB (2001) Potential for enhancement of root growth and nodulation of soybean coinoculated with Azospirillum and Bradyrhizobium in laboratory systems. Soil Biol Biochem 33:457–463 ArticleCAS Google Scholar
Murphy J, Riley J (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chem Acta 27:31–36 ArticleCAS Google Scholar
Nabti E, Sahnoune M, Adjrad S, Van Dommelen A, Ghoul M, Schmid M, Hartmann A (2007) A halophilic and osmotolerant Azospirillum brasilense strain from Algerian soil restores wheat growth under saline conditions. Eng Life Sci 7(4):354–360 ArticleCAS Google Scholar
Naz I, Bano A (2012) Assessment of phytohormones producing capacity of S_tenotrophomonas maltophilia_ SSA and its interaction with Zea mays l. Pak J Bot 44(1):465–469 CAS Google Scholar
Nelson DR, Mele PM (2007) Subtle changes in the rhizosphere microbial community structure in response to increased boron and sodium chloride concentrations. Soil Biol Biochem 39:340–351 ArticleCAS Google Scholar
Ofek M, Ruppel S, Waisel Y (2006) Effects of salinity on rhizosphere bacterial communities associated with different root types of Vicia faba L. In: Ozturk M, Waisel Y, Khan A, Gork G (eds) Biosaline agriculture and salinity tolerance in plants. Birkhauser Verlag, Basel, pp 1–21 Chapter Google Scholar
Ondrasek G, Rengel Z, Romic D, Poljak M, Romic M (2009) Accumulation of non/essential elements in radish plants grown in salt-affected and cadmium contaminated environment. Cereal Res Commun 37:9–12 CAS Google Scholar
Park M, Kin C, Yang J, Lee Y, Shin W, Kim S, Sa T (2005) Isolation and characterization of diazotrophic growth promoting bacteria from rhizosphere of agricultural crops of Korea. Microbiol Res 160:127–133 ArticleCASPubMed Google Scholar
Parvaiz A, Satyawati S (2008) Salt stress and phyto-biochemical responses of plants - a review. Plant Soil Environ 54(3):89 CAS Google Scholar
Qureshi MA, Shakir MA, Naveed M, Ahmad MJ (2009) Growth and yield response of chickpea to co-inoculation with Mesorhizobium ciceri and Bacillus megaterium. J Anim Plant Sci 19(4):205–211 Google Scholar
Rabie GH, Almadini AM (2005) Role of bioinoculants in development of salt-tolerance of Vicia faba plants under salinity stress. Afr J Biotechnol 4(3):210–222 CAS Google Scholar
Roder A, Hoffmann E, Hagemann M, Berg G (2005) Synthesis of the compatible solutes glucosylglycerol and trehalose by salt-stressed cells of Stenotrophomonas strains. FEMS Microb Lett 243:219–226 ArticleCAS Google Scholar
Rokhzadi A, Asgharzadeh A, Darvish F, Nour-Muhammadi G, Majidi E (2008) Influence of plant growth promotingrhizobacteria on dry matter accumulation and yield of chickpea (Cicer arietinum L.) under field conditions. Am Eur J Agric Environ Sci 3(2):253–257 Google Scholar
Rosas SB, Andres JA, Rovera M, Correa N (2006) Phosphate-solubilizing Pseudomonas putida can influence the rhizobia-legume symbiosis. Soil Biol Biochem 38:3502–3505 ArticleCAS Google Scholar
Schmidt CS, Alavi M, Cardinale M, Müller H, Berg G (2012) Stenotrophomonas rhizophila DSM14405T promotes plant growth probably by altering fungal communities in the rhizosphere. Biol Fertil Soils 48:947–960 Article Google Scholar
Shaharoona B, Arshad M, Zahir ZA (2006) Effect of plant growth promoting rhizobacteria containing ACC-deaminase on maize (Zea mays L.) growth under axenic conditions and on nodulation in mung bean (Vigna radiata L.). Lett Appl Microbiol 42(2):155–159 ArticleCASPubMed Google Scholar
Shahzad SM, Khalid A, Arshad M, Rehman K (2010) Improving nodulation, growth and yield of Cicer arietinum L. through bacterial ACC-deaminase induced changes in root architecture. Eur J Soil Biol 46(5):342–347 ArticleCAS Google Scholar
Siddiqui ZA, Mahmood I (2001) Effects of rhizobacteria and root symbionts on the reproduction of Meloidogyne javanica and growth of chickpea. Bioresour Technol 79(1):41–45 ArticleCASPubMed Google Scholar
Simons M, van der Bij AJ, Brand I, de Weger LA, Wijffelman CA, Lugtenberg B (1996) Gnotobiotic system for studying rhizosphere colonization by plant growth-promoting Pseudomonas bacteria. Mol Plant-Microbe Interact 9:600–607 ArticleCASPubMed Google Scholar
Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic-acid in microbial and microorganism-plant signaling. FEMS Microb Rev 31:425–448 ArticleCAS Google Scholar
Subbarao GV, Johansen C, Jana MK, Rao JVDKK (1990) Physiological basis of differences in salinity tolerance of pigeonpea and its related wild species. J Plant Physiology 137(1):64–71
Suckstorff I, Berg G (2003) Evidence for dose-dependent effects on plant growth by Stenotrophomonas strains from different origins. J Appl Microbiol 95(4):656–663 ArticleCASPubMed Google Scholar
Tisdall JM, Odes JM (1982) Organic matter and water stable aggregates in soils. J Soil Sci 33:141–163 ArticleCAS Google Scholar
Upadhyay SK, Singh JS, Singh DP (2011) Exopolysaccharide-producing plant growth-promoting rhizobacteria under salinity condition. Pedosphere 2:214–222 Article Google Scholar
Vincent JM (1970) A manual for the practical study of root nodule bacteria LBP Handbook No.15. Blackwell, Oxford, p 83 Google Scholar
Wolf A, Fritze A, Hagemann M, Berg G (2002) Stenotrophomonas rhizophila sp. nov., a novel plant-associated bacterium with antifungal properties. Int J Syst Evol Microbiol 52:1937–1944 CASPubMed Google Scholar
Zahran HH (1999) _Rhizobium_-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol Mol Biol Rev 63:968–989 CASPubMedPubMed Central Google Scholar
Zhu B, Liu H, Tian WX, Fan XY, Li B, Zhou XP, Jin GL, Xie GL (2012) Genome Sequence of Stenotrophomonas maltophilia RR-10, Isolated as an endophyte from rice root. J Bacteriol 194(5):1280–1281 ArticleCASPubMedPubMed Central Google Scholar