Al-Khatib K, Paulsen GM (1989) Enhancement of thermal injury to photosynthesis in wheat plants and thylakoids by high light intensity. Plant Physiol 90:1041–1048 ArticlePubMedCAS Google Scholar
Allakhverdiev SI, Murata N (2004) Environmental stress inhibits the synthesis de novo of proteins involved in the photodamage—repair cycle of photosystem II in Synechocystis sp. PCC. 6803. Biochim Biophys Acta 1657:23–32. doi:10.1016/j.bbabio.2004.03.003 ArticlePubMedCAS Google Scholar
Allakhverdiev SI, Feyziev YM, Ahmed A, Hayashi H, Aliev JA, Klimov VV et al (1996) Stabilization of oxygen evolution and primary electron transport reactions in photosystem II against heat stress with glycinebetaine and sucrose. J Photochem Photobiol 34:149–157. doi:10.1016/1011-1344(95)07276-4 ArticleCAS Google Scholar
Allakhverdiev SI, Yruela Y, Picorel R, Klimov VV (1997) Bicarbonate is an essential constituent of the water-oxidizing complex of photosystem II. Proc Natl Acad Sci USA 94:5050–5054. doi:10.1073/pnas.94.10.5050 ArticlePubMedCAS Google Scholar
Allakhverdiev SI, Kinoshita M, Inaba M, Suzuki I, Murata N (2001) Unsaturated fatty acids in membrane lipids protect the photosynthetic machinery against salt-induced damage in Synechococcus. Plant Physiol 125:1842–1853. doi:10.1104/pp.125.4.1842 ArticlePubMedCAS Google Scholar
Allakhverdiev SI, Hayashi H, Nishiyama Y, Ivanov AG, Aliev Ja A, Klimov VV et al (2003) Glycine betaine protects the D1/D2/Cytb559 complex of photosystem II against photo-induced and heat-induced inactivation. J Plant Physiol 160:41–49. doi:10.1078/0176-1617-00845 ArticlePubMedCAS Google Scholar
Allakhverdiev SI, Nishiyama Y, Takahashi S, Miyairi S, Suzuki I, Murata N (2005) Systematic analysis of the relation of electron transport and ATP synthesis to the photodamage and repair of photosystem II in Synechocystis. Plant Physiol 137:263–273. doi:10.1104/pp.104.054478 ArticlePubMedCAS Google Scholar
Allakhverdiev SI, Los DA, Mohanty P, Nishiyama Y, Murata N (2007) Glycinebetaine alleviates the inhibitory effect of moderate heat stress on the repair of photosystem II during photoinhibition. Biochim Biophys Acta 1767:1363–1371 PubMedCAS Google Scholar
Allen R (1995) Dissection of oxidative stress tolerance using transgenic plants. Plant Physiol 107:1049–1054 PubMedCAS Google Scholar
Aminaka R, Taira Y, Kashino Y, Koike H, Satoh K (2006) Acclimation to the growth temperature and thermosensitivity of photosystem II in a mesophilic cyanobacterium, Synechocystis sp. PCC6803. Plant Cell Physiol 47:1612–1621. doi:10.1093/pcp/pcl024 ArticlePubMedCAS Google Scholar
Balint I, Bhattacharya J, Perelman A, Schatz D, Moskovitz Y, Keren N et al (2006) Inactivation of the extrinsic subunit of photosystem II, PsbU, in Synechococcus PCC 7942 results in elevated resistance to oxidative stress. FEBS Lett 580:2117–2122. doi:10.1016/j.febslet.2006.03.020 ArticlePubMedCAS Google Scholar
Barber J, Ford RC, Mitchell RAC, Millner PA (1984) Chloroplast thylakoid membrane fluidity and its sensitivity to temperature. Planta 161:375–380. doi:10.1007/BF00398729 ArticleCAS Google Scholar
Barua D, Downs CA, Hechthorn SA (2003) Variation in chloroplast small heat-shock protein function is a major determinant of variation in thermotolerance of photosynthetic electron transport among ecotypes of Chenopodium album. Funct Plant Biol 30:1071–1079. doi:10.1071/FP03106 ArticleCAS Google Scholar
Bondarava N, Beyer P, Krieger-Liszkay A (2005) Function of the 23 kDa extrinsic protein of photosystem II as a manganese binding protein and its role in photoactivation. Biochim Biophys Acta 1708:63–70. doi:10.1016/j.bbabio.2005.01.005 ArticlePubMedCAS Google Scholar
Bukhov NG, Mohanty P (1999) Elevated temperature stress effects on photosystems: characterization and evaluation of the nature of heat induced impairments. In: Singhal GS, Renger G, Sopory SK, Irrgang K-D, Govingjee (eds) Concepts in photobiology: photosynthesis and photomorphogenesis. Narosa Publishing House, New Delhi, pp 617–648 Google Scholar
Carpentier R (1999) Effect of high-temperature stress on the photosynthetic apparatus. In: Pessarakli M (ed) Handbook of plant and crop stress. Marcel Dekker Inc, New York, pp 337–348 Google Scholar
Carratu L, Franceschelli S, Pardini CL, Kobayashi GS, Horvath I, Vigh L et al (1996) Membrane lipid perturbation modifies the set point of the temperature of heat shock response in yeast. Proc Natl Acad Sci USA 93:3870–3875. doi:10.1073/pnas.93.9.3870 ArticlePubMedCAS Google Scholar
Crafts-Brandner SJ, Salvucci ME (2000) Rubisco activase constrains the photosynthetic potential of leaves at high temperature and CO2. Proc Natl Acad Sci USA 97:13430–13435. doi:10.1073/pnas.230451497 ArticlePubMedCAS Google Scholar
Dau H, Iuzzolino L, Dittmer J (2001) The tetramanganese complex of photosystem II during its redox cycle. X-ray absorption results and mechanistic implications. Biochim Biophys Acta 1503:24–39. doi:10.1016/S0005-2728(00)00230-9 ArticlePubMedCAS Google Scholar
De Las Rivas J, Heredia P (1999) Structural predictions on the 33 kDa extrinsic protein associated with the oxygen evolving complex of photosynthetic organisms. Photosynth Res 61:11–21. doi:10.1023/A:1006265816104 Article Google Scholar
Downs CA, Coleman JS, Heckathorn SA (1999) The chloroplast 22-kDa heat-shock protein: a lumenal protein that associates with the oxygen evolving complex and protects photosystem II during heat stress. J Plant Physiol 155:477–487 CAS Google Scholar
El-Shitinawy F, Ebrahim MKH, Sewelam N, El-Shourbagy MN (2004) Activity of photosystem 2, lipid peroxidation, and the enzymatic antioxidant protective system in heat shocked barley seedlings. Photosynthetica 42:15–21. doi:10.1023/B:PHOT.0000040564.79874.42 Article Google Scholar
Enami I, Kitamura M, Tomo T, Isokawa Y, Ohta H, Katoh S (1994) Is the primary cause of thermal inactivation of oxygen evolution in spinach PS II membranes release of the extrinsic 33 kDa protein or of Mn? Biochim Biophys Acta 1186:52–58. doi:10.1016/0005-2728(94)90134-1 ArticleCAS Google Scholar
Enami I, Kamo M, Ohta H, Takahashi S, Miura T, Kusayanagi M, Tanabe S, Kamei A, Motoki A, Hirano M, Tomo T, Satoh K (1998) Intramolecular cross-linking of the extrinsic 33-kDa protein leads to loss of oxygen evolution but not its ability of binding to photosystem II and stabilization of the manganese cluster. J Biol Chem 273:4629–4634. doi:10.1074/jbc.273.8.4629 ArticlePubMedCAS Google Scholar
Feller U, Crafts-Brandner SJ, Salvucci ME (1998) Moderately high temperatures inhibit ribulose-1,5-biphosphate carboxylase/oxygenase (Rubisco) activase-mediated activation of Rubisco. Plant Physiol 116:539–546. doi:10.1104/pp.116.2.539 ArticlePubMedCAS Google Scholar
Gombos Z, Wada H, Murata N (1991) Direct evaluation of effects of fatty-acid unsaturation on the thermal properties of photosynthetic activities, as studied by mutation and transformation of Synechocystis PCC6803. Plant Cell Physiol 32:205–211 CAS Google Scholar
Gombos Z, Wada H, Hideg E, Murata N (1994) The unsaturation of membrane lipids stabilizes photosynthesis against heat stress. Plant Physiol 104:563–567 PubMedCAS Google Scholar
Gounaris K, Brain ARR, Quinn PJ, Williams WP (1983) Structural and functional changes associated with heat-induced phase separation of non-bilayer lipids in chloroplast thylakoid membranes. FEBS Lett 153:47–53. doi:10.1016/0014-5793(83)80117-3 ArticleCAS Google Scholar
Gounaris K, Brain ARR, Quinn PJ, Williams WP (1984) Structural reorganization of chloroplast thylakoid membranes in response to heat stress. Biochim Biophys Acta 766:198–208. doi:10.1016/0005-2728(84)90232-9 ArticleCAS Google Scholar
Hall AE (2001) Crop responses to environment. CRS Press LLC, Boca Raton, pp 324
Havaux M, Tardy F (1996) Temperature-dependent adjustment of the thermal stability of photosystem II in vivo: possible involvement of xanthophyll-cycle pigments. Planta 198:324–333. doi:10.1007/BF00620047 ArticleCAS Google Scholar
Havaux M, Greppin H, Strasser RJ (1991) Functioning of photosystems I and II in pea leaves exposed to heat stress in the presence or absence of light. Planta 186:88–98. doi:10.1007/BF00201502 ArticleCAS Google Scholar
Heckathorn S, Downs SA, Sharkey TD, Soleman JS (1998) The small, methionine-rich chloroplast heat-shock protein protects photosystem II electron transport during heat stress. Plant Physiol 116:439–444. doi:10.1104/pp.116.1.439 ArticlePubMedCAS Google Scholar
Heckathorn SA, Ryan SL, Baylis JA, Wang D, Hamilton EW, Cundiff L et al (2002) In vivo evidence from an Agrostis stolonifera selection genotype that chloroplast small heat-shock proteins can protect photosystem II during heat stress. Funct Plant Biol 29:933–944. doi:10.1071/PP01191 ArticleCAS Google Scholar
Horvath I, Glatz A, Varvasovszki V, Torok Z, Pali T, Balogh G et al (1998) Membrane physical state controls the signaling mechanism of the heat shock response in Synechocystis PCC 6803: identification of hsp17 as a fluidity gene. Proc Natl Acad Sci USA 95:3513–3518. doi:10.1073/pnas.95.7.3513 ArticlePubMedCAS Google Scholar
Inaba M, Grandall P (1988) Electrolyte leakage as an indicator of high-temperature injury to harvested mature green tomatoes. J Am Soc Hortic Sci 113:96–99 Google Scholar
Inaba M, Suzuki I, Szalontai B, Kanesaki Y, Los DA, Hayashi H et al (2003) Gene-engineered rigidification of membrane lipids enhances the cold inducibility of gene expression in Synechocystis. J Biol Chem 278:12191–12198. doi:10.1074/jbc.M212204200 ArticlePubMedCAS Google Scholar
Kalitulo LN, Pshybutko NL, Kabashnikova LF, Jahns P (2003) Photosynthetic apparatus and high temperature: role of light. Bulg J Plant Physiol 32:281–289 Google Scholar
Kimura A, Eaton-Rye JJ, Morita EH, Nishiyama Y, Hayashi H (2002) Protection of the oxygen-evolving machinery by the extrinsic proteins of photosystem II is also essential for development of cellular thermotolerance in Synechocystis sp. PCC 6803. Plant Cell Physiol 43:932–938. doi:10.1093/pcp/pcf110 ArticlePubMedCAS Google Scholar
Komayama K, Khatoon M, Takenaka D, Horie J, Yamashita A, Yoshioka M et al (2007) Quality control photosystem II cleavage and aggregation of D1 protein in spinach thylakoids. Biochim Biophys Acta 1767:6830–6837 Google Scholar
Kreslavski VD, Khristin MS (2003) Aftereffect of heat shock on fluorescence induction and low-temperature fluorescence spectra of wheat leaves. Russ J Biophys 48:865–872 Google Scholar
Kreslavski VD, Balakhnina TI, Khristin MS, Bukhov NG (2001) Pretreatment of bean seedlings by choline compounds increases the resistance of photosynthetic apparatus to UV radiation and elevated temperatures. Photosynthetica 39:353–358. doi:10.1023/A:1015174108937 Article Google Scholar
Kreslavski VD, Carpentier R, Klimov VV, Murata N, Allakhverdiev SI (2007) Molecular mechanisms of stress resistance of the photosynthetic apparatus. Membr Cell Biol 1:185–205 Google Scholar
Kreslavski V, Tatarinzev N, Shabnova N, Semenova G, Kosobrukhov A (2008) Characterization of the nature of photosynthetic recovery of wheat seedlings from short-time dark heat exposures and analysis of the mode of acclimation to different light intensities. J Plant Physiol. doi.org/10.1016/j.jplph.2007.12.011
Larkindale J, Knight MR (2002) Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene, and salicylic acid. Plant Physiol 128:682–695. doi:10.1104/pp.128.2.682 ArticlePubMedCAS Google Scholar
Law R, Crafts-Brandner SJ (1999) Inhibition and acclimation of photosynthesis to heat stress is closely correlated with activation of ribulose-1,5-bisphosphate carboxylase/oxygenase. Plant Physiol 120:173–182. doi:10.1104/pp.120.1.173 ArticlePubMedCAS Google Scholar
Los DA, Murata N (2004) Membrane fluidity and its roles in the perception of environmental signals. Biochim Biophys Acta 1666:142–157 PubMedCAS Google Scholar
Maestri E, Klueva N, Perrotta C, Gullil M, Nguyen HT, Marmiroli N (2002) Molecular genetics of heat tolerance and heat shock proteins in cereals. Plant Mol Biol 48:667–681. doi:10.1023/A:1014826730024 ArticlePubMedCAS Google Scholar
Mamedov MD, Hayashi H, Murata N (1993) Effects of glycinebetaine and unsaturation of membrane lipids on heat stability of photosynthetic electron transport and phosphorilation reactions in Synechocystis PCC 6803. Biochim Biophys Acta 1142:1–5. doi:10.1016/0005-2728(93)90077-S ArticleCAS Google Scholar
Miyake C, Okamura M (2003) Cyclic electron flow within PSII protects PSII from its photoinhibition in thylakoid membranes from spinach chloroplasts. Plant Cell Physiol 44:457–462. doi:10.1093/pcp/pcg053 ArticlePubMedCAS Google Scholar
Mohanty P, Vani B, Prakash S (2002) Elevated temperature treatment induced alteration in thylakoid membrane organization and energy distribution between the two photosystems in Pisum sativum. Z Naturforsch 57:836–842 CAS Google Scholar
Mohanty P, Allakhverdiev SI, Murata N (2007) Application of low temperature during photoinhibition allows characterization of individual steps in photodamage and repair of photosystem II. Photosynth Res 94:217–234. doi:10.1007/s11120-007-9184-y ArticlePubMedCAS Google Scholar
Murata N, Los DA (1997) Membrane fluidity and temperature perception. Plant Physiol 115:875–879 PubMedCAS Google Scholar
Nash D, Miyao M, Murata N (1985) Heat inactivation of oxygen evolution in photosystem II particles and its acceleration by chloride depletion and exogenous manganese. Biochim Biophys Acta 807:127–133. doi:10.1016/0005-2728(85)90115-X ArticleCAS Google Scholar
Neta-Sharir I, Isaacson T, Lurie S, Weiss D (2005) Dual role for tomato heat shock protein 21: protecting photosystem II from oxidative stress and promoting color changes during fruit maturation. Plant Cell 17:1829–1838. doi:10.1105/tpc.105.031914 ArticlePubMedCAS Google Scholar
Nishiyama Y, Los DA, Murata N (1999) PsbU, a protein associated with photosystem II, is required for the acquisition of cellular thermotolerance in Synechococcus species PCC 7002. Plant Physiol 120:301–308. doi:10.1104/pp.120.1.301 ArticlePubMedCAS Google Scholar
Nishiyama Y, Yamamoto H, Allakhverdiev SI, Inaba M, Yokota A, Murata N (2001) Oxidative stress inhibits the repair of photodamage to the photosynthetic machinery. EMBO J 20:5587–5594. doi:10.1093/emboj/20.20.5587 ArticlePubMedCAS Google Scholar
Nishiyama Y, Allakhverdiev SI, Murata N (2006) A new paradigm for the action of reactive oxygen species in the photoinhibition of photosystem II. Biochim Biophys Acta 1757:742–749. doi:10.1016/j.bbabio.2006.05.013 ArticlePubMedCAS Google Scholar
Nitta K, Suzuki N, Honma D, Kaneko Y, Nakamoto H (2005) Ultrastructural stability under high temperature or intensive light stress conferred by a small heat shock protein in cyanobacteria. FEBS Lett 579:1235–1242. doi:10.1016/j.febslet.2004.12.095 ArticlePubMedCAS Google Scholar
Ohnishi N, Murata N (2006) Glycinebetaine counteracts the inhibitory effects of salt stress on the degradation and synthesis of D1 protein during photoinhibition in Synechococcus sp. PCC 7942. Plant Physiol 141:758–765. doi:10.1104/pp.106.076976 ArticlePubMedCAS Google Scholar
Papageorgiou GC, Murata N (1995) The unusually strong stabilizing effects of glycine betaine on the structure and function of the oxygen-evolving photosystem II complex. Photosynth Res 44:243–252. doi:10.1007/BF00048597 ArticleCAS Google Scholar
Pastenes C, Horton R (1996) Effect of high temperature on photosynthesis in beans. Plant Physiol 112:1245–1251 PubMedCAS Google Scholar
Pastori GM, Foyer CH (2002) Common components, networks and pathways of cross-tolerance to stress. The central role of “redox” and abscisic-acid-mediated controls. Plant Physiol 129:460–468. doi:10.1104/pp.011021 ArticlePubMedCAS Google Scholar
Pueyo JJ, Alfonso M, Andres C, Picorel R (2002) Increased tolerance to thermal inactivation of oxygen evolution in spinach photosystem II membranes by substitution of the extrinsic 33-kDa protein by its homologue from a thermophilic cyanobacterium. Biochim Biophys Acta 1554:22–35. doi:10.1016/S0005-2728(02)00207-4 Article Google Scholar
Salvucci ME, Crafts-Brandner SJ (2004) Relationship between the heat tolerance of photosynthesis and the thermal stability of Rubisco activase in plants from contrasting thermal environments. Plant Physiol 134:1460–1470. doi:10.1104/pp.103.038323 ArticlePubMedCAS Google Scholar
Sato N, Sonoike K, Kawaguchi A, Tsuzuki M (1996) Contribution of lowered unsaturation levels of chloroplast lipids to high temperature tolerance of photosynthesis in Chlamydomonas reinhardtii. J Photochem Photobiol 36:333–337. doi:10.1016/S1011-1344(96)07389-7 ArticleCAS Google Scholar
Sharkey TD (2005) Effects of moderate heat stress on photosynthesis: importance of thylakoid reactions, rubisco deactivation, reactive oxygen species, and thermotolerance provided by isoprene. Plant Cell Environ 28:269–277. doi:10.1111/j.1365-3040.2005.01324.x ArticleCAS Google Scholar
Shutova T, Kenneweg H, Buchta J, Nikitina J, Terentyev V, Chernyshov S et al (2008) The photosystem II-associated Cah3 in Chlamydomonas enhances the O2 evolution rate by proton removal. EMBO J 27:782–791. doi:10.1038/emboj.2008.12 ArticlePubMedCAS Google Scholar
Takahashi S, Nakamura T, Sakamizu M, van Woesik R, Yamasaki H (2004) Repair machinery of symbiotic photosynthesis as the primary target of heat stress for reef-building corals. Plant Cell Physiol 45:251–255. doi:10.1093/pcp/pch028 ArticlePubMedCAS Google Scholar
Tanaka Y, Nishiyama Y, Murata N (2000) Acclimation of the photosynthetic machinery to high temperature in Chlamydomonas reinhardtii requires synthesis de novo of proteins encoded by the nuclear and chloroplast genomes. Plant Physiol 124:441–450. doi:10.1104/pp.124.1.441 ArticlePubMedCAS Google Scholar
Török Z, Goloubinoff P, Horvath I, Tsvetkova NM, Glatz A, Balogh G et al (2001) Synechocystis HSP17 is an amphitropic protein that stabilizes heat stressed membranes and binds denatured proteins for subsequent chaperone-mediated refolding. Proc Natl Acad Sci USA 98:3098–3103. doi:10.1073/pnas.051619498 ArticlePubMed Google Scholar
Vani B, Saradhi PP, Mohanty P (2001) Characterization of high temperature induced stress impairments in thylakoids of rice seedlings. Indian J Biochem Biophys 38:220–229 PubMedCAS Google Scholar
Villarejo A, Shutova T, Moskvin O, Forssen M, Klimov VV, Samuelsson G (2002) A photosystem II-associated carbonic anhydrase regulates the efficiency of photosynthetic oxygen evolution. EMBO J 21:1930–1938. doi:10.1093/emboj/21.8.1930 ArticlePubMedCAS Google Scholar
Wada H, Gombos Z, Murata N (1994) Contribution of membrane lipids to the ability of the photosynthetic machinery to tolerate temperature stress. Proc Natl Acad Sci USA 91:4273–4277. doi:10.1073/pnas.91.10.4273 ArticlePubMedCAS Google Scholar
Wahid A, Shabbir A (2005) Induction of heat stress tolerance in barley seedlings by pre-sowing seed treatment with glycinebetaine. Plant Growth Regul 46:133–141. doi:10.1007/s10725-005-8379-5 ArticleCAS Google Scholar
Weis E (1981) The temperature-sensitivity of dark inactivation and light activation of the ribulose-1,5-bisphosphate carboxylase in spinach chloroplasts. FEBS Lett 129:197–200. doi:10.1016/0014-5793(81)80164-0 ArticleCAS Google Scholar
Yamada M, Hidaka T, Fukamachi H (1996) Heat tolerance in leaves of tropical fruit crops as measured by chlorophyll fluorescence. Sci Hortic (Amsterdam) 67:39–48. doi:10.1016/S0304-4238(96)00931-4 ArticleCAS Google Scholar
Yamane Y, Shikanai T, Koike H, Satoh K (2000) Reduction of QA in the dark: another cause of fluorescence Fo increases by high temperatures in higher plants. Photosynth Res 63:23–34. doi:10.1023/A:1006350706802 ArticlePubMedCAS Google Scholar
Yang X, Liang Z, Lu C (2005) Genetic engineering of the biosynthesis of glycinebetaine enhances photosynthesis against high temperature stress in transgenic tobacco plants. Plant Physiol 138:2299–2309. doi:10.1104/pp.105.063164 ArticlePubMedCAS Google Scholar
Yang X, Wen X, Gong H, Lu Q, Yang Z, Tang Y et al (2007) Genetic engineering of the biosynthesis of glycinebetaine enhances thermotolerance of photosystem II in tobacco plants. Planta 225:719–733. doi:10.1007/s00425-006-0380-3 ArticlePubMedCAS Google Scholar
Yordanov IS, Dilova R, Petkova T, Pangelova V, Goltsev V, Süss K-H (1986) Mechanisms of the temperature damage and acclimation of the photosynthetic apparatus. Photobiochem Photobiophys 12:147–155 Google Scholar
Yoshioka M, Uchida S, Mori H, Komayama K, Ohira S, Morita N et al (2006) Quality control of photosystem II. Cleavage of reaction center D1 protein in spinach thylakoids by FtsH protease under moderate heat stress. J Biol Chem 281:21660–21669. doi:10.1074/jbc.M602896200 ArticlePubMedCAS Google Scholar
Zharmukhamedov SK, Shirshikova GN, Maevskaya ZV, Antropova TM, Klimov VV (2007) Bicarbonate protects the water-oxidizing complex of photosystem II against thermoinactivation in intact Chlamydomonas reinhardtii cells. Russ J Plant Physiol 54:302–308. doi:10.1134/S1021443707030028 ArticleCAS Google Scholar