The role of the bifactor model in resolving dimensionality issues in health outcomes measures (original) (raw)
References
Embretson, S. E., & Reise, S. P. (2000). Item response theory for psychologists. Mahwah, NJ: Erlbaum. Google Scholar
Bjorner, J. B., Kosinksi, M., & Ware, J. E. Jr. (2003a). The feasibility of applying item response theory to measures of migraine impact: A re-analysis of three clinical studies. Quality of Life Research, 12, 887–902. ArticlePubMed Google Scholar
Bjorner, J. B., Kosinksi, M., & Ware, J. E., Jr. (2003b). Using item response theory to calibrate the Headache Impact Test (HITTM) to the metric of traditional scales. Quality of Life Research, 12, 981–1002. ArticlePubMed Google Scholar
Bjorner, J. B., Kosinksi, M., & Ware, J. E., Jr. (2003c). Calibration of an item pool for assessing the burden of headaches: An application of item response theory to the Headache Impact Test (HITTM) to the metric of traditional scales. Quality of Life Research, 12, 913–933. ArticlePubMed Google Scholar
Haley, S. M., McHorney, C. A., & Ware, J. E., Jr. (1994). Evaluation of the MOS SF-36 physical functioning scale (PF-10): I. unidimensionality and reproducibility of the Rasch item scale. Journal of Clinical Epidemiology, 47, 671–684. ArticlePubMedCAS Google Scholar
Hambleton, R. K. (2000). Emergence of item response modeling in instrument development and data analysis. Medical Care, 38(Suppl. 9), 60–65. Google Scholar
Hays, R. D., Morales, L. S., & Reise, S. P. (2000). Item response theory and health outcomes measurement in the 21st century. Medical Care, 38(Suppl. 2), 28–42. Google Scholar
Reise, S. P. (2004). Item response theory and its applications for cancer outcomes measurement. In J. Lipscomb, C. C. Gotay, & C. F. Snyder (Eds.), The cancer outcomes measurement working group (COMWG): An NCI initiative to improve the science of outcomes measurement in cancer (pp. 425–444). Boston, MA: Cambridge University Press. Google Scholar
Christoffersson, A. (1975). Factor analysis of dichotomized variables. Psychometrika, 40, 5–32. Article Google Scholar
Knol, D. L., & Berger, M. P. F. (1991). Empirical comparison between factor analytic and multidimensional item response models. Multivariate Behavioral Research, 26, 457–477. Article Google Scholar
McDonald, R. P. (1999). Test theory: A unified approach. Mahwah, NJ: Erlbaum. Google Scholar
McDonald, R. P. (2000). A basis for multidimensional item response theory. Applied Psychological Measurement, 24, 99–114. Article Google Scholar
Takane, Y., & de Leeuw, J. (1987). On the relationship between item response theory and factor analysis of discretized variables. Psychometrika, 52, 393–408. Article Google Scholar
Hargraves, J. L., Hays, R. D., & Cleary, P. D. (2003). Psychometric properties of the Consumer Assessment of Health Plans Study (CAHPS®) 2.0 adult core survey. Health Services Research, 38, 1509–1527. ArticlePubMed Google Scholar
Reise, S. P., Meijer, R. R., Ainsworth, A. T., Morales, L. S., & Hays, R. D. (2006). Application of group level item response models in the evaluation of consumer reports about health plan quality. Multivariate Behavioral Research, 41, 85–102. Article Google Scholar
Reise, S. P., Waller, N. G., & Comrey, A. L. (2000). Factor analysis and scale revision. Psychological Assessment, 12, 287–297. ArticlePubMedCAS Google Scholar
Reitan, R. M., & Wolfson, D. (1996). Theoretical, methodological, and validational bases of the Halstein-Reitan Neuropsychological Test Battery. In I. Grant & K. M. Adams (Eds.), Neuropsychological assessment of neuropsychiatric disorder. New York: Oxford University Press. Google Scholar
Cattell, R. B. (1966). Psychological theory and scientific method. In R. B. Cattell (Ed.), Handbook of multivariate experimental psychology (pp. 1–18). Chicago: Rand McNally. Google Scholar
Ackerman, T. A. (1994). Using multidimensional item response theory to understand what items and tests are measuring. Applied Measurement in Education, 18, 225–278. Google Scholar
Ackerman, T. A. (1996). Graphical representation of multidimensional item response theory analyses. Applied Psychological Measurement, 4, 311–330. Article Google Scholar
Reckase, M. D. (1997). The past and future of multidimensional item response theory. Applied Psychological Measurement, 21, 25–36. Article Google Scholar
Reckase, M. D., Ackerman, T. A., & Carlson, J. E. (1988). Building a unidimensional test using multidimensional items. Journal of Educational Measurement, 25, 193–203. Article Google Scholar
McDonald, R. P. (1981). The dimensionality of test and items. British Journal of Mathematical and Statistical Psychology, 34, 100–117. Google Scholar
Hattie, J. (1985). Methodology review: Assessing unidimensionality of test and items. Applied Psychological Measurement, 9, 139–164. Article Google Scholar
Chernyshenko, O. S., Stark, S., & Chan, K. Y. (2001). Investigating the hierarchical factor structure of the fifth edition of the 16PF: An application of the Schmid-Leiman orthogonalization procedure. Educational and Psychological Measurement, 61, 290–302. Article Google Scholar
Drasgow, F., & Lissak, R. I. (1983). Modified parallel analysis: A procedure for examining the latent dimensionality of dichotomously scored item responses. Journal of Applied Psychology, 68, 363–373. Article Google Scholar
Nandakumar, R., & Stout, W. F. (1993). Refinement of Stout’s procedure for assessing latent trait dimensionality. Journal of Educational Statistics, 18, 41–68. Article Google Scholar
Stout, W. (1987). A nonparametric approach for assessing latent trait unidimensionality. Psychometrika, 52, 589–617. Article Google Scholar
Gibbons, R. D., & Hedeker, D. R. (1992). Full-information item bifactor analysis. Psychometrika, 57, 423–436. Article Google Scholar
Holzinger, K. J., & Swineford, F. (1937). The bifactor method. Psychometrika, 2, 41–54. Article Google Scholar
Schmid, J., & Leiman, J. M. (1957). The development of hierarchical factor solutions. Psychometrika, 22, 53–61. Article Google Scholar
Yung, Y. F., Thissen, D., & McLeod, L. D. (1999). On the relationship between the higher-order factor model and the hierarchical factor model. Psychometrika, 64, 113–128. Article Google Scholar
Gustafsson, J., & Balke, G. (1993). General and specific abilities as predictors of school achievement. Multivariate Behavioral Research, 28, 407–434. Article Google Scholar
Wang, W., Chen, P., & Cheng, Y. (2004). Improving measurement precision of test batteries using multidimensional item response models. Psychological Methods, 9, 116–136. ArticlePubMed Google Scholar
Segall, D. O. (1996). Multidimensional adaptive testing. Psychometrika 61, 331–354. Article Google Scholar
Rindskopf, D., & Rose, T. (1988). Some theory and applications of confirmatory second-order factor analysis. Multivariate Behavioral Research, 23, 51–67. Article Google Scholar
Chen, F. F., West, S. G., & Sousa, K. H. (2006). A comparison of bifactor and second-order models of quality of life. Multivariate Behavioral Research, 41, 189–224. Article Google Scholar
Waller, N. G. (2001). MicroFACT 2.0: A microcomputer factor analysis program for ordered polytomous data and mainframe size problems [computer program]. St. Paul, MN: Assessment Systems Corporation.
Wolff, H., & Preising, K. (2005). Exploring item and higher order factor structure with the Schmid-Leiman solution: Syntax codes for SPSS and SAS. Behavioral Research Methods, 37, 48–58. Google Scholar
Muthén, L. K., & Muthén, B. O. (2004). Mplus user’s guide [version 3; computer program]. Los Angeles, CA: Muthén & Muthén. Google Scholar
Kass, R. E., & Wasserman, L. (1995). A reference Bayesian test for nested hypotheses and its relationship to the Schwartz criterion. Journal of the American Statistical Association, 90, 928–934. Article Google Scholar
Samejima, F. (1969). Estimation of latent ability using a response pattern of graded scores. Psychometrika Monograph Supplement, 34, 100–114. Google Scholar
Muraki, E., & Carlson, J. E. (1995). Full-information factor analysis for polytomous item responses. Applied Psychological Measurement, 19, 73–90. Article Google Scholar
Wood, R., Wilson, D., Gibbons, R., Schilling, S., Muraki, E., & Bock, R. D. (2003). TESTFACT: Test scoring, item statistics, and item factor analysis [version 4; computer program]. Lincolnwood, IL: Scientific Software International, Inc. Google Scholar
Bock, R. D., Gibbons, R., & Muraki, E. (1988). Full information item factor analysis. Applied Psychological Measurement, 12, 261–280. Article Google Scholar
Swygert, K. A., McLeod, L. D., & Thissen, D. (2001). Factor analysis for items or testlets scored in more than two categories. In D. Thissen & H. Wainer (Eds.), Test scoring (pp. 217–250). Mahwah, NJ: Erlbaum. Google Scholar
Steinberg, L., & Thissen, D. (1996). Uses of item response theory and the testlet concept in the measurement of psychopathology. Psychological Methods, 1, 81–97. Article Google Scholar
Davey, T., Oshima, T. C., & Lee, K. (1996). Linking multidimensional item calibrations. Applied Psychological Measurement, 20, 405–416. Article Google Scholar
Li, Y. H., & Lissitz, R. W. (2000). An evaluation of the accuracy of multidimensional IRT linking. Applied Psychological Measurement, 24, 115–138. Google Scholar
Ackerman, T. A. (1992). An explanation of differential item functioning from a multidimensional perspective. Journal of Educational Measurement, 24, 67–91. Article Google Scholar
Roussos, L., & Stout, W. (1996). A multidimensionality-based DIF analysis paradigm. Applied Psychological Measurement, 20, 355–371. Article Google Scholar
Flora, D. B., & Curran, P. J. (2004). An empirical evaluation of alternative methods of estimation for confirmatory factor analysis with ordinal data. Psychological Methods, 9, 466–491. ArticlePubMed Google Scholar
Fraser, C., & McDonald, R. P. (1988). NOHARM: Least squares item factor analysis. Multivariate Behavioral Research, 23, 267–269. Article Google Scholar
Gibbons, R. D., Bock, R. D., Hedeker, D., Weiss, D. J., Segawa, E., Bhaumik, D. K., Kupfer, D. J., Frank, E., Grochocinski, V. J., & Stover, A. (2007). Full-information item bi-factor analysis of graded response data. Applied Psychological Measurement, 31, 4–19. Article Google Scholar
Jöreskog, K. G., & Sörbom, D. (1995). LISREL 8 users’s reference guide [computer program]. Chicago: Scientific Software. Google Scholar