Differential Evolution Markov Chain with snooker updater and fewer chains (original) (raw)
References
Babu, B.V., Angira, R.: Modified differential evolution (MDE) for optimization of non-linear chemical processes. Comput. Chem. Eng. 30, 989–1002 (2006) Article Google Scholar
Gelman, A., Carlin, J.B., Stern, H.S., Rubin, D.B.: Bayesian Data Analysis, 2nd edn. Chapman & Hall, London (2004) MATH Google Scholar
Gilks, W.R., Roberts, G.O.: Strategies for improving MCMC. In: Gilks, W.R., Richardson, S., Spiegelhalter, D.J. (eds.) Markov Chain Monte Carlo in Practice, pp. 89–114. Chapman & Hall, London (1996) Google Scholar
Gilks, W.R., Roberts, G.O., George, E.I.: Adaptive direction sampling. Statistician 43, 179–189 (1994) Article Google Scholar
Haario, H., Laine, M., Mira, A., Saksman, E.: DRAM: Efficient adaptive MCMC. Stat. Comput. 16, 339–354 (2006) ArticleMathSciNet Google Scholar
Jarner, S.F., Roberts, G.O.: Convergence of heavy-tailed Monte Carlo Markov chain algorithms. Scand. J. Stat. 34, 781–815 (2007) MathSciNet Google Scholar
Liang, F.M., Wong, W.H.: Real-parameter evolutionary Monte Carlo with applications to Bayesian mixture models. J. Am. Stat. Assoc. 96, 653–666 (2001) ArticleMATHMathSciNet Google Scholar
Liu, J., Hodges, J.S.: Posterior bimodality in the balanced one-way random-effects model. J. R. Stat. Soc. Ser. B 65, 247–255 (2003) ArticleMATHMathSciNet Google Scholar
Mengersen, K., Robert, C.P.: IID sampling using self-avoiding population Monte Carlo: the pinball sampler. In: Bernardo, J.M., Bayarri, M.J., Berger, J.O., Dawid, A.P., Heckerman, D., Smith, A.F.M., West, M. (eds.) Bayesian Statistics 7, pp. 277–292. Clarendon, Oxford (2003) Google Scholar
Pinheiro, J.C., Bates, D.M.: Mixed-Effects Models in S and S-PLUS. Springer, New York (2000) MATH Google Scholar
Price, K.V., Storn, R.M., Lampinen, J.A.: Differential Evolution, A Practical Approach to Global Optimization. Springer, Berlin (2005) MATH Google Scholar
Robert, C.P., Casella, G.: Monte Carlo Statistical Methods, 2nd edn. Springer, New York (2004) MATH Google Scholar
Roberts, G.O., Gilks, W.R.: Convergence of adaptive direction sampling. J. Multivar. Anal. 49, 287–298 (1994) ArticleMATHMathSciNet Google Scholar
Roberts, G.O., Rosenthal, J.S.: Optimal scaling for various Metropolis-Hastings algorithms. Stat. Sci. 16, 351–367 (2001) ArticleMATHMathSciNet Google Scholar
Roberts, G.O.: Linking theory and practice of MCMC. In: Green, P.J., Hjort, N.L., Richardson, S. (eds.) Highly Structured Stochastic Systems, pp. 145–166. Oxford University Press, Oxford (2003) Google Scholar
Roberts, G.O., Rosenthal, J.S.: Coupling and ergodicity of adaptive Markov chain Monte Carlo algorithms. J. Appl. Probab. 44, 458–475 (2007) ArticleMATHMathSciNet Google Scholar
Spiegelhalter, D., Thomas, A., Best, N., Lunn, D.: WinBUGS User Manual version 1.4. www.mrc-bsu.cam.ac.uk/bugs (2003)
Storn, R., Price, K.: Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11, 341–359 (1997) ArticleMATHMathSciNet Google Scholar
Strens, M., Bernhardt, M., Everett, N.: Markov chain Monte Carlo sampling using direct search optimization. In: Sammut, C., Hoffmann, A.G. (eds.) Machine Learning, Proceedings of the Nineteenth International Conference on Machine Learning (ICML 2002), pp. 602–609. Morgan Kaufmann, San Fransisco (2002) Google Scholar
ter Braak, C.J.F.: A Markov chain Monte Carlo version of the genetic algorithm differential evolution: easy Bayesian computing for real parameter spaces. Stat. Comput. 16, 239–249 (2006) ArticleMathSciNet Google Scholar
Vrugt, J.A., ter Braak, C.J.F., Gupta, H.V., Robinson, B.A.: Equifinality of formal (DREAM) and informal (GLUE) Bayesian approaches in hydrologic modeling? Stochastic Environmental Research and Risk Assessment (SERRA) (2008a). DOI:10.1007/s00477-008-0274-y
Vrugt, J.A., ter Braak, C.J.F., Clark, M.P., Hyman, J.M., Robinson, B.A.: Treatment of input uncertainty in hydrologic modeling: doing hydrology backwards with Markov chain Monte Carlo simulation. Water Resour. Res. (2008b, in press)
Waagepetersen, R., Sorensen, D.: A tutorial on reversible jump MCMC with a view toward applications in QTL-mapping. Int. Stat. Rev. 69, 49–61 (2001) ArticleMATH Google Scholar