Delone sets with congruent clusters (original) (raw)

Abstract

In the paper, we present a short survey and new results of the local theory of regular systems, more precisely the part that establishes for a given Delone set the link between congruence of fragments (‘clusters’) of the set and its global symmetry. The theory describes ‘local rules’ of a Delone set which imply its regularity or multi-regularity, i.e., imply that a Delone set is an orbit or the union of several orbits, respectively, under its symmetry group. We will discuss a cycle of new results of the local theory for Delone sets which have centrally symmetrical fragments: clusters or patches.

Access this article

Log in via an institution

Subscribe and save

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Feynman R, Leighton R, Sands M (1964) Feynman lectures on physics, vol II. Addison-Wesley, Boston
    Google Scholar
  2. Delaunay B (1934) Sur la sphère vide. A la mémoire de Georges Voronoï. Bulletin de l’Academie des Sciences de l’URSS 7(6):793–800
  3. Delone BN (1937) Geometry of positive quadratic forms. Uspekhi Matem Nauk 3:16–62 (in Russian)
    Google Scholar
  4. Delone BN, Dolbilin NP, Stogrin MI, Galiuilin RV (1976) A local criterion for regularity of a system of points. Sov Math Dokl 17:319–322
    Google Scholar
  5. Penrose R (1974) The role of aesthetics in pure and applied mathematical research. Bull Inst Math Appl 10:266
    Google Scholar
  6. Mackay AL (1962) A dense non-crystallographic packing of equal spheres. Acta Crystallogr 15:916
    Article CAS Google Scholar
  7. Mackay AL (1981) De Nive Quinquangula. Krystallografiya 26:910–9
    Google Scholar
  8. Shechtman D, Blech I, Gratias D, Cahn J (1984) Metallic phase with long-range orientational order and no translational symmetry. Phys Rev Lett 53:1951
    Article CAS Google Scholar
  9. Dolbilin NP, Lagarias JC, Senechal M (1998) Multiregular point systems. Discrete Comput Geom 20:477–498
    Article Google Scholar
  10. Dolbilin N, Schulte E (2004) The local theorem for monotypic tilings. Electron J Comb 11(2):R7
    Google Scholar
  11. Lagarias JC (1999) Geometric models for quasicrystals I: delone sets of finite type. Discrete Comput Geom 21(2):161–191
    Article Google Scholar
  12. Dolbilin N (2015) A criterion for crystal and locally antipodal Delone sets. Vestnik Chelyabinskogo Gos Universiteta 3(358):6–17 (in Russian)
    Google Scholar
  13. Dolbilin N (2016) Delone Sets: local identity and global symmetry. Springer, Berlin
    Google Scholar
  14. Dolbilin NP, Shtogrin MI (1988) A local criterion for a crystal structure. Abstracts of the IX All-Union Geometrical Conference, Kishinev, p 99 (in Russian)
  15. Dolbilin NP (2000) The extension theorem. Discrete Math 221(1–3):43–59
    Article Google Scholar
  16. Dolbilin NP, Makarov VS (2002) The extension theorem in the theory of isohedral tilings and its applications. Proc Steklov Inst Math 239:136–158
    Google Scholar
  17. Dolbilin NP, Magazinov AN (2015) Locally antipodal Delauney Sets. Russ Math Surv 70(5):958–960
    Article Google Scholar
  18. Fedorov ES (1885) Elements of the study of figures. Zap Mineral Imper S Peterburgskogo Obschestva 21(2):1–279
    Google Scholar
  19. Schoenflies A (1891) Kristallsysteme und Kristallstruktur. Druck und verlag von BG Teubner, Leipzig
    Google Scholar
  20. Bieberbach L (1912) Über die Bewegungsgruppen des n-dimensionalen Euklidischen Räumes I. Math Ann 70(1911):207–336
    Google Scholar
  21. Bieberbach L (1911) Über die Bewegungsgruppen des n-dimensionalen Euklidischen Räumes II. Math Ann 72:400–412
    Article Google Scholar
  22. Schattschneider D, Dolbilin N (1998) One corona is enough for the Euclidean plane. Quasicrystals and Discrete Geometry, Fields Inst. Monogr., vol 10. American Math. Soc, Providence, pp 207–246
  23. Dolbilin NP, Magazinov AN (2016) The uniqueness theorem for locally antipodal Delone Sets. In: Modern problems of mathematics, mechanics and mathematical physics, II, Collected papers, Steklov Institute Proceedings, vol 294, MAIK, M

Download references

Acknowledgments

The author is grateful to Dr. Igor Baburin for his helpful suggestion to consider Delone sets with centrally symmetrical patches and to Dr. Andrei Ordine for his help in editing the English text. This work is supported by the Russian Science Foundation under Grant 14-11-00414.

Author information

Authors and Affiliations

  1. Steklov Mathematical Institute of the Russian Academy of Sciences, Gubkina Str. 8, Moscow, Russia, 119991
    Nikolay Dolbilin

Corresponding author

Correspondence toNikolay Dolbilin.

Additional information

Dedicated to Professor Vladimir Shevchenko on the occasion of his 75th birthday.

Rights and permissions

About this article

Cite this article

Dolbilin, N. Delone sets with congruent clusters.Struct Chem 27, 1725–1732 (2016). https://doi.org/10.1007/s11224-016-0832-8

Download citation

Keywords