Effects of Additional Layer(s) on the Mobility of Arsenic from Hydrothermally Altered Rock in Laboratory Column Experiments (original) (raw)
References
Aachib, M., Mbonimpa, M., & Aubertin, M. (2004). Measurement and prediction of the oxygen diffusion coefficient in unsaturated media, with applications to soil covers. Water, Air, & Soil Pollution, 156(1), 163–193. ArticleCAS Google Scholar
Appelo, C. A. J., & Postma, D. (2005). Geochemistry, groundwater and pollution (2nd ed.). London: A.A. Blkema. Book Google Scholar
Bornstein, J., Hedstrom, W. E., & Scott, F. R. (1980). Oxygen diffusion rate relationships under three soil conditions. Technical Bulletin, 98, 1–12. Google Scholar
Chandra, A. P., & Gerson, A. R. (2010). The mechanisms of pyrite oxidation and leaching: a fundamental perspective. Surface Science Reports, 65(9), 293–315. ArticleCAS Google Scholar
Chen, C. J., Chen, C. W., Wu, M. M., & Kuo, T. L. (1992). Cancer potential in liver, lung, bladder and kidney due to ingested inorganic arsenic in drinking water. British Journal of Cancer, 66(5), 888–892. ArticleCAS Google Scholar
Cornelis, G., Johnson, C. A., Gerven, T. V., & Vandecasteele, C. (2008). Leaching mechanisms of oxyanionic metalloid and metal species in alkaline solid wastes: a review. Applied Geochemistry, 23(5), 955–976. ArticleCAS Google Scholar
Deutsch, W. J. (1997). Groundwater geochemistry: fundamentals and applications to contamination. Florida: Lewis. Google Scholar
Donato, P., Mustin, C., Benoit, R., & Erre, R. (1993). Spatial distribution of iron and sulphur species on the surface of pyrite. Applied Surface Science, 68(1), 81–93. Article Google Scholar
Dzombak, D. A., & Morel, F. M. M. (1990). Surface complexation modeling: hydrous ferric oxide. New York: Wiley. Google Scholar
Foster, A. L., Brown, G. E., Jr., Tingle, T. N., & Parks, G. A. (1998). Quantitative arsenic speciation in mine tailings using X-ray absorption spectroscopy. American Mineralogist, 83, 553–568. ArticleCAS Google Scholar
Ghosh, M. M., & Yuan, J. R. (1987). Adsorption of inorganic arsenic and organoarsenicals on hydrous oxides. Environmental Progress, 6(3), 150–157. ArticleCAS Google Scholar
Gupta, A. K., & Gupta, M. (2005). Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials, 26(18), 3995–4021. ArticleCAS Google Scholar
Katsumi, T., Benson, C. H., Foose, G. J., & Kamon, M. (2001). Performance-based design of landfill liners. Engineering Geology, 60(1-4), 139–148. Article Google Scholar
Klerk, R. J. D., Jia, Y., Daenzer, R., Gomez, M. A., & Demopoulos, G. P. (2012). Continuous circuit co-precipitation of arsenic (V) with ferric iron by lime neutralization: process parameter effects on arsenic removal and precipitate quality. Hydrometallurgy, 111–112, 65–72. Article Google Scholar
Lui, Z., & Dreybrodt, W. (1997). Dissolution kinetics of calcium carbonate minerals in H2O–CO2 solutions in turbulent flow: the role of the diffusion boundary layer and the slow reaction H2O + CO2 ‹–› H+ + HCO3 −. Geochimica et Cosmochimica Acta, 61, 2879–2889. Article Google Scholar
Ministry of Land Infrastructure Transport and Tourism Japan (2010). Status of water resources in Japan. http://www.mlit.go.jp/common/001121771.pdf, Accessed 1 September 2016.
Morse, W. J., Arvidson, S. R., & Luttge, A. (2007). Calcium carbonate formation and dissolution. Chemical Reviews, 107(2), 342–381. ArticleCAS Google Scholar
Neira, J., Ortiz, M., Morales, L., & Acevedo, E. (2015). Oxygen diffusion in soils: understanding the factors and processes needed for modeling. Chilean Journal of Agricultural Research, 75, 35–44. Article Google Scholar
O’day, P. A., Vlassopoulos, D., Root, R., & Rivera, N. (2004). The influence of sulfur and iron on dissolved arsenic concentrations in the shallow subsurface under changing redox conditions. Proceedings of the National Academy of Sciences, 101(38), 13703–13708. Article Google Scholar
Pirajno, F. (2009). Hydrothermal processes and mineral systems. The Natherlands: Springer Science. Book Google Scholar
Ruiping, L., Xing, L., Shengji, X., Yanling, Y., Rongcheng, W., & Guibai, L. (2007). Calcium-enhanced ferric hydroxide co-precipitation of arsenic in the presence of silicate. Water Environment Research, 79(11), 2260–2264. Article Google Scholar
Safiullah, S., Kabir, A., Hasan, K., & Rahman, M. M. (2004). Comparative study of adsorption-desorption of arsenic on various arsenic removing materials. Journal of Bangladesh Academy of Sciences, 28(1), 27–34. CAS Google Scholar
Savage, K. S., Tingle, T. N., O’day, P. A., Waychunas, G. A., & Bird, D. K. (2000). Arsenic speciation in pyrite and secondary weathering phases, Mother Lode Gold District, Tuolumne Country, California. Applied Geochemistry, 15(8), 1219–1244. ArticleCAS Google Scholar
Schaufuß, A. G., Nesbitt, H. W., Kartio, I., Laajalehto, K., Bancroft, G. M., & Szargan, R. (1998). Reactivity of surface chemical states on fractured pyrite. Surface Science, 411, 321–328. Article Google Scholar
Smedley, P. L., & Kinniburgh, D. G. (2002). A review of the source, behavior and distribution of arsenic in natural waters. Applied Geochemistry, 17(5), 517–568. ArticleCAS Google Scholar
Stumm, W., & Lee, F. (1961). Oxygenation of ferrous iron. Industry and Engineering Chemistry, 53, 143–146. ArticleCAS Google Scholar
Tabelin, C. B., & Igarashi, T. (2009). Mechanisms of arsenic and lead release from hydrothermally altered rock. Journal of Hazardous Materials, 169(1-3), 980–990. ArticleCAS Google Scholar
Tabelin, C. B., Igarashi, T., & Takahashi, R. (2012a). Mobilization and speciation of arsenic from hydrothermally altered rock in laboratory column experiments under ambient conditions. Applied Geochemistry, 27(1), 326–342. ArticleCAS Google Scholar
Tabelin, C. B., Igarashi, T., & Yoneda, T. (2012b). Mobilization and speciation of arsenic from hydrothermally altered rock containing calcite and pyrite under anoxic conditions. Applied Geochemistry, 27(12), 2300–2314. ArticleCAS Google Scholar
Tabelin, C. B., Igarashi, T., Arima, T., & Sato, D. (2014). Characterization and evaluation of arsenic and boron adsorption onto geologic materials, and their application in the disposal of excavated altered rock. Geoderma, 213, 163–172. ArticleCAS Google Scholar
Takahashi, T., Fujii, K., Igarashi, T., Kaketa, K., & Yamada, N. (2011). Distribution properties and leaching of arsenic by the hydrothermally-altered rocks of Nakakoshi Area, central Hokkaido, Japan. Journal of the Japan Society of Engineering Geology, 52(2), 46–54. Article Google Scholar
Todd, E. C., Sherman, D. M., & Purton, J. A. (2003). Surface oxidation of pyrite under ambient atmospheric and aqueous (pH = 2 to 10) conditions: electronic structure and mineralogy from X-ray absorption spectroscopy. Geochimica et Cosmochimica Acta, 67(5), 881–893. ArticleCAS Google Scholar
Wang, S., & Mulligan, C. N. (2006). Natural attenuation processes for remediation of arsenic contaminated soils and groundwater. Journal of Hazardous Materials, 138(3), 459–470. ArticleCAS Google Scholar
Webster, J. G. (1999). Arsenic. In C. P. Marshall & R. W. Fairbridge (Eds.), Encyclopedia of geochemistry (pp. 21–22). London: Chapman Hall. Google Scholar
WHO (World Health Organization) (2011). Guidelines for drinking-water quality. 4th edition.