68Ga-DOTA-TATE PET vs. 123I-MIBG in Identifying Malignant Neural Crest Tumours (original) (raw)
Neumann HP, Bausch B, McWhinny SR, Bender BU, Gimm O, Franke G et al (2002) Germ-line mutations in nonsyndromic pheochromocytoma. N Engl J Med 346:1459–1466 ArticlePubMedCAS Google Scholar
O’Riordain D, Young WF, Grant CS, Carney JA, van Heerden (1996) Clinical spectrum and outcome of functional extraadrenal paraganglioma. World J Surg 20:916–922 ArticlePubMed Google Scholar
Reisch N, Peczkowska M, Januszewicz A, Neumann HP (2006) Pheochromocytoma: presentation, diagnosis and treatment. J Hypertens 24:2331–2339 ArticlePubMedCAS Google Scholar
Win Z, Al-Nahhas A, Towey D, Todd JF, Rubello D, Lewington V, Gishen P (2007) 68Ga-DOTATATE PET in neuroectodermal tumours: first experience. Nucl Med Commun 28:359–363 ArticlePubMed Google Scholar
Ilias I, Chen CC, Carrasquillo JA, Whatley M, Ling A, Lazurova I et al (2008) Comparison of 6-18F-fluorodopamine positron emission tomography to 123I-metaiodobenzylguanidine and 111In-pentetreotide scintigraphy in the localization of non-metastatic and metastatic pheochromocytoma. J Nucl Med 49:1613–1619 ArticlePubMed Google Scholar
Lewigton VJ (2003) Targeted radionuclide therapy for neuroendocrine tumours. Endocr-Relat Cancer 10:497–501 Article Google Scholar
Kwekkeboom DJ, Mueller-Brand J, Paganelli G, Anthony LB, Pauwels S, Kvols LK et al (2005) Overview of results of peptide receptor radionuclide therapy with 3 radiolabeled somatostatin analogs. J Nucl Med 46(Suppl 1):62S–66S PubMedCAS Google Scholar
Smith SL, Vincent RM, Perkins AC, Wastie ML, Sokal M (2001) Does simple estimation of 131I-metaiodobenzylguanidine uptake in patients with neural crest tumours correlate with clinical outcome? Nucl Med Commun 22:257–260 ArticlePubMedCAS Google Scholar
Pasini B, Stratakis CA (2009) SDH mutations in tumorigenesis and inherited endocrine tumours: lesson from the phaeochromocytoma-paraganglioma syndromes. J Intern Med 266(1):19–42 ArticlePubMedCAS Google Scholar
Yankovskaya V, Horsefield R, Törnroth S, Luna-Chavez C, Miyoshi H, Léger C et al (2003) Architecture of succinate dehydrogenase and reactive oxygen species generation. Science 299:700–704 ArticlePubMedCAS Google Scholar
Astuti D, Latif F, Dallol A, Dahia PL, Douglas F, George E et al (2001) Gene mutations in the succinate dehydrogenase subunit SDHB cause susceptibility to familial pheochromocytoma and to familial paraganglioma. Am J Hum Genet 69:49–54 ArticlePubMedCAS Google Scholar
Baysal BE, Ferrell RE, Willett-Brozick JE, Lawrence EC, Myssiorek D, Bosch A et al (2000) Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma. Science 287:848–851 ArticlePubMedCAS Google Scholar
Niemann S, Muller U (2000) Mutations in SDHC cause autosomal dominant paraganglioma, type 3. Nat Genet 26:268–270 ArticlePubMedCAS Google Scholar
Karagiannis A, Mikhailidis DP, Athyros VG, Harsoulis F (2007) Pheochromocytoma: an update on genetics and management. Endocr-Relat Cancer 14:935–956 ArticlePubMedCAS Google Scholar
Benn DE, Gimenez-Roqueplo A-P, Reilly JR, Bertherat J, Burgess J, Byth K et al (2006) Clinical presentation and penetrance of pheochromocytoma/paraganglioma syndromes. J Clin Endocrinol Metab 91:27–836 Google Scholar
Klein RD, Jin L, Rumilla K, Young WF Jr, Lloyd RV (2008) Germline SDHB mutations are common in patients with apparently sporadic sympathetic paragangliomas. Diagn Mol Pathol 17(2):94–100 ArticlePubMedCAS Google Scholar
Bryant J, Farmer J, Kessler LJ, Townsend RR, Nathanson KL (2003) Pheochromocytoma: the expanding genetic differential diagnosis. J Natl Cancer Inst 95(16):1196–1204 ArticlePubMedCAS Google Scholar
Chrisoulidou A, Kaltsas G, Ilias I, Grossman AB (2007) The diagnosis and management of malignant phaeochromocytoma and paraganglioma. Endocr-Relat Cancer 14(3):569–585 ArticlePubMedCAS Google Scholar
Ilias I, Pacak K (2004) Current approaches and recommended algorithm for the diagnostic localization of pheochromocytoma. J Clin Endocrinol Metab 89:479–491 ArticlePubMedCAS Google Scholar
Go AS (1998) Refining probability: an introduction to the use of diagnostic tests. In: Friedland DJ (ed) Evidence-based medicine. McGraw-Hill, New York, pp 12–33 Google Scholar
Wieland DM, Wu JL, Brown LE (1980) Radiolabelled adrenergic neuron blocking agents: adrenomedullary imaging with 131Iiodobenzylguanidine. J Nucl Med 21:349–353 PubMedCAS Google Scholar
Beierwaltes WH (1991) Endocrine imaging: parathyroid, adrenal cortex and medulla, and other endocrine tumors. Part II. J Nucl Med 32:1627–1639 PubMedCAS Google Scholar
McEwan AJ, Shapiro B, Sisson JC, Beierwaltes WH, Ackery DM (1985) Radioiodobezylguanidine for the scintigraphic location and therapy of adrenergic tumors. Semin Nucl Med 15:132–153 ArticlePubMedCAS Google Scholar
Shulkin BL, Ilias I, Sisson JC, Pacak K (2006) Current trends in functional imaging of pheochromocytomas and paragangliomas. Ann NY Acad Sci 1073:374–382 ArticlePubMed Google Scholar
Mann GN, Link JM, Pham P, Pickett CA, Byrd DR, Kinahan PE et al (2006) 11C-metahydroxyephedrine and 18F-fluorodeoxyglucose positron emission tomography improve clinical decision making in suspected phaeochromocytoma. Ann Surg Oncol 13(2):187–197 ArticlePubMed Google Scholar
Reynolds S, Lewington V (2008) Radionuclide imaging of phaeochromocytoma and paraganglioma. Imaging 34:21–24 Google Scholar
Koopmans KP, Jager PL, Kema IP, Kerstens MN, Albersy F, Dullaart RPF (2008) 111In-octreotide is superior to 123I-metaiodobenzylguanidine for scintigraphic detection of head and neck paragangliomas. J Nucl Med 49:1232–1237 ArticlePubMed Google Scholar
Ilias I, Pacak K (2008) A clinical overview of pheochromocytomas/paragangliomas and carcinoid tumors. Nucl Med Biol 35(Suppl 1):S27–S34 ArticlePubMedCAS Google Scholar
Brink I, Hoegerle S, Klisch J, Bley TA (2005) Imaging of pheochromocytoma and paraganglioma. Fam Cancer 4(1):61–68 ArticlePubMedCAS Google Scholar
Maurea S, Mainolfi C, Wang H, Varrella P, Panico MR, Klain M et al (1996) Positron emission tomography (PET) with fludeoxyglucose F 18 in the study of adrenal masses: comparison of benign and malignant lesions. Radiol Med 92:782–787 PubMedCAS Google Scholar
Shulkin BL, Thompson NW, Shapiro B, Francis IR, Sisson JC (1999) Pheochromocytomas: imaging with 2-[fluorine-18]fluoro-2-deoxy-D-glucose PET. Radiology 212:35–41 PubMedCAS Google Scholar
Neumann DR, Basile KE, Bravo EL, Chen EQ, Go RT (1996) Malignant phaeochromocytoma of the anterior mediastinum: PET findings with [18F] FDG and 82Rb. J Comput Assist Tomogr 20:312–316 ArticlePubMedCAS Google Scholar
Mamede M, Carrasquillo JA, Chen CC, Del Corral P, Whatley M, Ilias I et al (2006) Discordant localization of 2-[18F]-fluoro-2-deoxy-D-glucose in 6-[18F]-fluorodopamine- and [(123)I]-metaiodobenzylguanidine-negative metastatic pheochromocytoma sites. Nucl Med Commun 27:31–36 ArticlePubMed Google Scholar
Timmers H, Chen C, Carrasquillo J, Whatley M, Ling A, Havekes B et al (2009) Comparison of 18F-fluoro-L-DOPA, 18F-fluoro-deoxyglucose, and 18F-fluorodopamine PET and 123I-MIBG scintigraphy in the localization of pheochromocytoma and paraganglioma. J Clin Endocrinol Metab 94(12):4757–4767 ArticlePubMedCAS Google Scholar
Khan S, Lloyd C, Szyszko T, Win Z, Rubello D, Al-Nahhas A (2008) PET imaging in endocrine tumours. Minerva Endocrinol 33(2):41–52 PubMedCAS Google Scholar
Al-Nahhas A, Win Z, Szyszko T, Singh A, Khan S, Rubello D (2007) What can gallium-68 PET add to receptor and molecular imaging? Eur J Nucl Med Mol Imaging 34(12):1897–1901 ArticlePubMed Google Scholar