Hierarchical Multinomial Processing Tree Models: A Latent-Trait Approach (original) (raw)
References
Albert, J.H., & Chib, S. (1993). Bayesian analysis of binary and polychotomous response data. Journal of the American Statistical Association, 88, 669–679. Article Google Scholar
Ansari, A., Vanhuele, M., & Zemborain, M. (2008). Heterogeneous multinomial processing tree models. Unpublished manuscript. Columbia University, New York.
Atchison, J., & Shen, S.M. (1980). Logistic-normal distributions: Some properties and uses. Biometrika, 67, 261–272. Article Google Scholar
Batchelder, W.H., & Riefer, D.M. (1986). The statistical analysis of a model for storage and retrieval processes in human memory. British Journal of Mathematical and Statistical Psychology, 39, 129–149. Google Scholar
Batchelder, W.H., & Riefer, D.M. (1999). Theoretical and empirical review of multinomial processing tree modeling. Psychonomic Bulletin & Review, 6, 57–86. Google Scholar
Batchelder, W.H., & Riefer, D.M. (2007). Using multinomial processing tree models to measure cognitive deficits in clinical populations. In R.W.T. Neufeld (Ed.), Advances in clinical cognitive science: formal analysis of processes and symptoms (pp. 19–50). Washington: American Psychological Association Books. Chapter Google Scholar
Bayarri, M.J., & Berger, J.O. (1999). Quantifying surprise in the data and model verification. Bayesian Statistics, 6, 53–83. Google Scholar
Boomsma, A., van Duijn, M.A.J., & Snijders, T.A.B. (Eds.) (2000). Essays on item response theory. New York: Springer. Google Scholar
Efron, B. (1982). The jackknife, the bootstrap and other resampling plans. Philadelphia: Society for Industrial and Applied Mathematics. Google Scholar
Erdfelder, E. (2000). Multinomiale Modelle in der kognitiven Psychologie [Multinomial models in cognitive psychology]. Unpublished habilitation thesis, Psychologisches Institut der Universität Bonn, Germany
Gelman, A., Carlin, J.B., Stern, H.S., & Rubin, D.B. (2004). Bayesian data analyses (2nd ed.). Boca Raton: Chapman & Hall/CRC. Google Scholar
Gelman, A., & Hill, J. (2007). Data analysis using regression and multilevel/hierarchical models. New York: Cambridge University Press. Google Scholar
Gill, J. (2008). Bayesian methods: A social and behavioral sciences approach (2nd ed.). Boca Raton: Chapman & Hall/CRC. Google Scholar
Hu, X., & Batchelder, W.H. (1994). The statistical analysis of general processing tree models with the EM algorithm. Psychometrika, 59, 21–47. Article Google Scholar
Karabatsos, G., & Batchelder, W.H. (2003). Markov chain estimation methods for test theory without an answer key. Psychometrika, 68, 373–389. Article Google Scholar
Klauer, K.C. (2006). Hierarchical multinomial processing tree models: a latent-class approach. Psychometrika, 71, 1–31. Article Google Scholar
O’Hagan, A., & Forster, J. (2004). Kendall’s advanced theory of statistics: Volume 2B: Bayesian inference London: Arnold. Google Scholar
Rao, C.R. (1973). Linear statistical inference and its applications. New York: Wiley. Book Google Scholar
Riefer, D.M., & Batchelder, W.H. (1988). Multinomial modeling and the measurement of cognitive processes. Psychological Review, 95, 318–339. Article Google Scholar
Riefer, D.M., & Batchelder, W.H. (1991). Age differences in storage and retrieval: a multinomial modeling analysis. Bulletin of the Psychonomic Society, 29, 415–418. Google Scholar
Robert, P.C. (1995). Simulation of truncated normal variables. Statistics and Computing, 5, 121–125. Article Google Scholar
Raudenbush, S.W., & Bryk, A.S. (2002). In Hierarchical linear models: Applications and data analysis methods (2nd ed.). Thousand Oaks: Sage Publications. Google Scholar
Rouder, J.N., & Lu, J. (2005). An introduction to Bayesian hierarchical models with an application in the theory of signal detection. Psychonomic Bulletin & Review, 12, 573–604. Google Scholar
Rouder, J.N., Lu, J., Morey, R.D., Sun, D., & Speckman, P.L. (2008). A hierarchical process-dissociation model. Journal of Experimental Psychology: General, 137, 370–389. Article Google Scholar
Smith, J., & Batchelder, W. (2009, in press). Beta-MPT: Multinomial processing tree models for addressing individual differences. Journal of Mathematical Psychology.
Stahl, C., & Klauer, K.C. (2007). HMMTree: A computer program for latent-class hierarchical multinomial processing tree models. Behavior Research Methods, 39, 267–273. PubMed Google Scholar
Stefanescu, C., Berger, V.W., & Hershberger, S. (2005). Probits. In B.S. Everitt & D.C. Howell (Eds.), The encyclopedia of statistics in behavioral science (Vol. 4, pp. 1608–1610). Chichester: Wiley. Google Scholar
Tuyl, F., Gerlach, R., & Mengersen, K. (2009). Posterior predictive arguments in favor of the Bayes-Laplace prior as the consensus prior for binomial and multinomial parameters. Bayesian Analysis, 4, 151–158. Article Google Scholar
Wei, G.C.G., & Tanner, M.A. (1990). A Monte Carlo implementation of the EM algorithm and the poor man’s data augmentation algorithms. Journal of the American Statistical Association, 85, 699–704. Article Google Scholar
Zhu, M., & Lu, A.Y. (2004). The counter-intuitive non-informative prior for the Bernoulli family. Journal of Statistics Education, 12. Retrieved June 19, 2009, from http://www.amstat.org/publications/jse/v12n2/zhu.pdf.