Solution structure of the X4 protein coded by the SARS related coronavirus reveals an immunoglobulin like fold and suggests a binding activity to integrin I domains (original) (raw)

References

  1. 1. Rota P.A., Oberste M.S., Monroe S.S., Nix W.A., Campagnoli R., Icenogle J.P., Penaranda S., Bankamp B., Maher K., Chen M.H., Tong S., Tamin A., Lowe L., Frace M., DeRisi J.L., Chen Q., Wang D., Erdman D.D., Peret T.C., Burns C., Ksiazek T.G., Rollin P.E., Sanchez A., Liffick S., Holloway B., Limor J., McCaustland K., Olsen-Rasmussen M., Fouchier R., Gunther S., Osterhaus A.D., Drosten C., Pallansch M.A., Anderson L.J. and Bellini W.J., Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science 300: 1394–1399, 2003
    Article PubMed CAS Google Scholar
  2. 2. Marra M.A., Jones S.J., Astell C.R., Holt R.A., Brooks-Wilson A., Butterfield Y.S., Khattra J., Asano J.K., Barber S.A., Chan S.Y., Cloutier A., Coughlin S.M., Freeman D., Girn N., Griffith O.L., Leach S.R., Mayo M., McDonald H., Montgomery S.B., Pandoh P.K., Petrescu A.S., Robertson A.G., Schein J.E., Siddiqui A., Smailus D.E., Stott J.M., Yang G.S., Plummer F., Andonov A., Artsob H., Bastien N., Bernard K., Booth T.F., Bowness D., Czub M., Drebot M., Fernando L., Flick R., Garbutt M., Gray M., Grolla A., Jones S., Feldmann H., Meyers A., Kabani A., Li Y., Normand S., Stroher U., Tipples G.A., Tyler S., Vogrig R., Ward D., Watson B., Brunham R.C., Krajden M., Petric M., Skowronski D.M., Upton C. and Roper R.L., The Genome sequence of the SARS-associated coronavirus. Science 300: 1399–1404, 2003
    Article PubMed CAS Google Scholar
  3. 3. Stadler K., Masignani V., Eickmann M., Becker S., Abrignani S., Klenk H.D. and Rappuoli R., SARS – beginning to understand a new virus. Nat. Rev. Microbiol. 1: 209–218, 2003
    Article PubMed CAS Google Scholar
  4. 4. Steffens C.M. and Hope T.J., Recent advances in the understanding of HIV accessory protein function. Aids 15(Suppl 5): S21–S26, 2001
    Article PubMed CAS Google Scholar
  5. 5. Bour S. and Strebel K., The HIV-1 Vpu protein: a multifunctional enhancer of viral particle release. Microbes Infect. 5:1029–1039, 2003
    Article PubMed CAS Google Scholar
  6. 6. Stockl J., Vetr H., Majdic O., Zlabinger G., Kuechler E. and Knapp W., Human major group rhino viruses downmodulate the accessory function of monocytes by inducing IL-10. J. Clin. Invest. 104: 957–965, 1999
    Article PubMed CAS Google Scholar
  7. 7. Nelson C.A., Pekosz A., Lee C.A., Diamond M.S. and Fremont D.H., Structure and intracellular targeting of the SARS-coronavirus Orf7a accessory protein. Structure 13: 75–85, 2005
    Article PubMed CAS Google Scholar
  8. 8. Snijder E.J., Bredenbeek P.J., Dobbe J.C., Thiel V., Ziebuhr J., Poon L.L., Guan Y., Rozanov M., Spaan W.J. and Gorbalenya A.E., Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage. J. Mol. Biol. 331: 991–1004, 2003
    Article PubMed CAS Google Scholar
  9. 9. Fielding B.C., Tan Y.J., Shuo S., Tan T.H., Ooi E.E., Lim S.G., Hong W. and Goh P.Y., Characterization of a unique group-specific protein (U122) of the severe acute respiratory syndrome coronavirus. J. Virol. 78: 7311–7318, 2004
    Article PubMed CAS Google Scholar
  10. 10. Tan Y.J., Teng E., Shen S., Tan T.H., Goh P.Y., Fielding B.C., Ooi E.E., Tan H.C., Lim S.G. and Hong W., A novel severe acute respiratory syndrome coronavirus protein, U274, is transported to the cell surface and undergoes endocytosis. J. Virol. 78:6723–6734, 2004
    Article PubMed CAS Google Scholar
  11. 11. Yu C.J., Chen Y.C., Hsiao C.H., Kuo T.C., Chang S.C., Lu C.Y., Wei W.C., Lee C.H., Huang L.M., Chang M.F., Ho H.N. and Lee F.J., Identification of a novel protein 3a from severe acute respiratory syndrome coronavirus. FEBS Lett. 565: 111–116, 2004
    Article PubMed CAS Google Scholar
  12. 12. Tan Y.J., Fielding B.C., Goh P.Y., Shen S., Tan T.H., Lim S.G. and Hong W., Overexpression of 7a, a protein specifically encoded by the severe acute respiratory syndrome coronavirus, induces apoptosis via a caspase-dependent pathway. J. Virol. 78: 14043–14047, 2004
    Article PubMed CAS Google Scholar
  13. 13. Maniatis T., Fritsch E.F. and Sambrook J., Molecular Cloning: a Laboratory Manual. Cold Spring Harbor Laboratory, NY, 1982
    Google Scholar
  14. 14. Farrow N.A., Muhandiran R., Singer A.U., Pascal S.M., Kay C.M., Gish G., Shoelson S.E., Pawson T., Forman-Kay J.D. and Kay L.E., Backbone dynamics of a free and phosphopeptide-complexed Src homology 2 domain studied by 15N NMR relaxation. Biochemistry 33: 5984–6003, 1994
    Article PubMed CAS Google Scholar
  15. 15. Keller R., Computer Aided Resonance Assignment Tutorial, 1 edn. Cantina Verlag, 2004
    Google Scholar
  16. 16. Nilges M. and O’Donoghue S.I., Ambiguous NOEs and automated NOE assignment. Progr. Nucl. Magn. Res. Spectr. 32: 107–139, 1998
    Article CAS Google Scholar
  17. 17. Nilges M., A calculation strategy for the structure determination of symmetric dimers by 1H NMR. Proteins 17: 297–309, 1993
    Article PubMed CAS Google Scholar
  18. 18. Koradi R., Billeter M. and Wuthrich K., MOLMOL: a program for display and analysis of macromolecular structures. J. Mol. Graph. 14: 51–55, 1996
    Article PubMed CAS Google Scholar
  19. 19. Laskowski R.A., Rullmann J.A.C., MacArthur M.W., Kaptein R. and Thornton J.M., AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J. Biomol. NMR 8:477–486, 1996
    Article PubMed CAS Google Scholar
  20. 20. Vriend G., What If – a molecular modeling and drug design program. J. Mol. Graph. 8: 52–56, 1990
    Article PubMed CAS Google Scholar
  21. 21. Kabsch W. and Sander C., Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22: 2577–2637, 1983
    Article PubMed CAS Google Scholar
  22. 22. Wang J. and Springer T.A., Structural specializations of immunoglobulin superfamily members for adhesion to integrins and viruses. Immunol. Rev. 163: 197–215, 1998
    Article PubMed CAS Google Scholar
  23. 23. Bork P., Holm L. and Sander C., The immunoglobulin fold. Structural classification, sequence patterns and common core. J. Mol. Biol. 242: 309–320, 1994
    PubMed CAS Google Scholar
  24. 24. Casasnovas J.M., Stehle T., Liu J.H., Wang J.H. and Springer T.A., A dimeric crystal structure for the N-terminal two domains of intercellular adhesion molecule-1. Proc. Natl. Acad. Sci. U SA 95: 4134–4139, 1998
    Article PubMed CAS Google Scholar
  25. 25. Casasnovas J.M., Springer T.A., Liu J.H., Harrison S.C. and Wang J.H., Crystal structure of ICAM-2 reveals a distinctive integrin recognition surface. Nature 387: 312–315, 1997
    Article PubMed CAS Google Scholar
  26. 26. Vigers G.P., Anderson L.J., Gaffes P. and Brandhuber B.J., Crystal structure of the type-I interleukin-1 receptor complexed with interleukin-lbeta. Nature 386: 190–194, 1997
    Article PubMed CAS Google Scholar
  27. 27. Holm L., Sander C., Touring protein fold space with Dali/FSSP. Nucl. Acids Res. 26: 216–319, 1998
    Article Google Scholar
  28. 28. Wang C.Y., Naka Y., Liao H., Oz M.C., Springer T.A., Gutierrez-Ramos J.C. and Pinsky D.J., Cardiac graft intercellular adhesion molecule-1 (ICAM-1) and interleukin-1 expression mediate primary isograft failure and induction of ICAM-1 in organs remote from the site of transplantation. Circ. Res. 82:762–772, 1998
    PubMed CAS Google Scholar
  29. 29. Gahmberg C.G., Tolvanen M. and Kotovuori P., Leukocyte adhesion – structure and function of human leukocyte beta2-integrins and their cellular ligands. Eur. J. Biochem. 245: 215–232, 1997
    Article PubMed CAS Google Scholar
  30. 30. Shimaoka M., Xiao T., Liu J.H., Yang Y., Dong Y., Jun C.D., McCormack A., Zhang R., Joachimiak A., Takagi J., Wang J.H. and Springer T.A., Structures of the alpha L I domain and its complex with ICAM-1 reveal a shape-shifting pathway for integrin regulation. Cell 112: 99–111, 2003
    Article PubMed CAS Google Scholar
  31. 31. Pettersen E.F., Goddard T.D., Huang C.C., Couch G.S., Greenblatt D.M., Meng E.C. and Ferrin T.E., UCSF Chimera – a visualization system for exploratory research and analysis. J. Comput. Chem. 25: 1605–1612, 2004
    Article PubMed CAS Google Scholar
  32. 32. Barton G.J., Alscript – a tool to format multiple sequence alignments. Protein Engineering 6: 37–40, 1993
    Article PubMed CAS Google Scholar
  33. 33. Diamond M.S., Staunton D.E., Marlin S.D. and Springer T.A., Binding of the integrin Mac-1 (CD11b/CD18) to the third immunoglobulin-like domain of ICAM-1 (CD54) and its regulation by glycosylation. Cell 65: 961–971, 1991
    Article PubMed CAS Google Scholar
  34. 34. Diamond M.S., Garcia-Aguilar J., Bickford J.K., Corbi A.L. and Springer T.A., The I domain is a major recognition site on the leukocyte integrin Mac-1 (CD11b/CD18) for four distinct adhesion ligands. J. Cell. Biol. 120: 1031–1043, 1993
    Article PubMed CAS Google Scholar
  35. 35. Vorup-Jensen T., Ostermeier C., Shimaoka M., Hommel U. and Springer T.A., Structure and allosteric regulation of the alpha X beta 2 integrin I domain. Proc. Natl. Acad. Sci. USA 100: 1873–1878, 2003
    Article PubMed CAS Google Scholar
  36. 36. Van der Vieren M., Le Trong H., Wood C.L., Moore P.F., St John T., Staunton D.E. and Gallatin W.M., A novel leukointegrin, alpha d beta 2, binds preferentially to ICAM-3. Immunity 3: 683–690, 1995
    Article PubMed Google Scholar
  37. 37. Fortin J.F., Cantin R., Lamontagne G. and Tremblay M., Host-derived ICAM-1 glycoproteins incorporated on human immunodeficiency virus type 1 are biologically active and enhance viral infectivity. J. Virol. 71: 3588–3596, 1997
    PubMed CAS Google Scholar
  38. 38. Schubert U. and Strebel K., Differential activities of the human immunodeficiency virus type 1-encoded Vpu protein are regulated by phosphorylation and occur in different cellular compartments. J. Virol. 68: 2260–2271, 1994
    PubMed CAS Google Scholar
  39. 39. Schubert U., Antón L.C., Bacók I., Cox J.H., Bour S., Bennink J.R., Orlowski M., Strebel K. and Yewdell J.W., CD4 glycoprotein degradation induced by human immunodeficiency virus type 1 Vpu protein requires the function of proteasomes and the ubiquitin-conjugating pathway. J. Virol. 72: 2280–2288, 1998
    PubMed CAS Google Scholar
  40. 40. Bleijs D.A., Geijtenbeek T.B., Figdor C.G. and van Kooyk Y., DC-SIGN and LFA-1: a battle for ligand. Trends Immunol. 22: 457–463, 2001
    Article PubMed CAS Google Scholar
  41. 41. Arnaout M.A., Leukocyte adhesion molecules deficiency: its structural basis, pathophysiology and implications for modulating the inflammatory response. Immunol. Rev. 114: 145–180, 1990
    Article PubMed CAS Google Scholar
  42. 42. Yamaguchi N., Kubo C., Masuhiro Y., Lally E.T., Koga T. and Hanazawa S., Tumor necrosis factor alpha enhances Actinobacillus actinomycetemcomitans leukotoxin-induced HL-60 cell apoptosis by stimulating lymphocyte function-associated antigen 1 expression. Infect. Immun. 72: 269–276, 2004
    Article PubMed CAS Google Scholar
  43. 43. Cui W., Fan Y., Wu W., Zhang F., Wang J.Y. and Ni A.P., Expression of lymphocytes and lymphocyte subsets in patients with severe acute respiratory syndrome. Clin. Infect. Dis. 37:857–859, 2003
    Article PubMed Google Scholar
  44. 44. Cloyd M.W., Chen J.J. and Wang I., How does HIV cause AIDS? The homing theory. Mol. Med. Today 6: 108–111, 2000
    Article PubMed CAS Google Scholar
  45. 45. Rösch P. and Wiilbold D. Is EIAV Tat protein a homeodomain? Science 272: 1672, 1996
    Article PubMed Google Scholar
  46. 46. Willbold P., Metzger A., Sticht H., Voit R., Gallert K.C., Dank N., Bayer P., Krauss G., Goody R.S. and Rösch P. Equine infections anemia virus transactivator is a homeodomai type protein. J. Mol. Biol. 277: 749–755, 1998
    Article PubMed CAS Google Scholar
  47. 47. Willbold P., Hoffmann S. and Rösch P. Secondary structure and tertially fold of the human immunodeficiency. Eur. J. Biochem. 245: 581–588, 1997
    Article PubMed CAS Google Scholar
  48. 48. González M.E. and Carrasco L. The human immunodeficiency virus type 1 Vpu protein enhances membrane permeability. Biochemistry. 37: 13710–13719, 1998
    Article PubMed Google Scholar

Download references