Solution structure of the X4 protein coded by the SARS related coronavirus reveals an immunoglobulin like fold and suggests a binding activity to integrin I domains (original) (raw)
References
1. Rota P.A., Oberste M.S., Monroe S.S., Nix W.A., Campagnoli R., Icenogle J.P., Penaranda S., Bankamp B., Maher K., Chen M.H., Tong S., Tamin A., Lowe L., Frace M., DeRisi J.L., Chen Q., Wang D., Erdman D.D., Peret T.C., Burns C., Ksiazek T.G., Rollin P.E., Sanchez A., Liffick S., Holloway B., Limor J., McCaustland K., Olsen-Rasmussen M., Fouchier R., Gunther S., Osterhaus A.D., Drosten C., Pallansch M.A., Anderson L.J. and Bellini W.J., Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science 300: 1394–1399, 2003 ArticlePubMedCAS Google Scholar
2. Marra M.A., Jones S.J., Astell C.R., Holt R.A., Brooks-Wilson A., Butterfield Y.S., Khattra J., Asano J.K., Barber S.A., Chan S.Y., Cloutier A., Coughlin S.M., Freeman D., Girn N., Griffith O.L., Leach S.R., Mayo M., McDonald H., Montgomery S.B., Pandoh P.K., Petrescu A.S., Robertson A.G., Schein J.E., Siddiqui A., Smailus D.E., Stott J.M., Yang G.S., Plummer F., Andonov A., Artsob H., Bastien N., Bernard K., Booth T.F., Bowness D., Czub M., Drebot M., Fernando L., Flick R., Garbutt M., Gray M., Grolla A., Jones S., Feldmann H., Meyers A., Kabani A., Li Y., Normand S., Stroher U., Tipples G.A., Tyler S., Vogrig R., Ward D., Watson B., Brunham R.C., Krajden M., Petric M., Skowronski D.M., Upton C. and Roper R.L., The Genome sequence of the SARS-associated coronavirus. Science 300: 1399–1404, 2003 ArticlePubMedCAS Google Scholar
3. Stadler K., Masignani V., Eickmann M., Becker S., Abrignani S., Klenk H.D. and Rappuoli R., SARS – beginning to understand a new virus. Nat. Rev. Microbiol. 1: 209–218, 2003 ArticlePubMedCAS Google Scholar
4. Steffens C.M. and Hope T.J., Recent advances in the understanding of HIV accessory protein function. Aids 15(Suppl 5): S21–S26, 2001 ArticlePubMedCAS Google Scholar
5. Bour S. and Strebel K., The HIV-1 Vpu protein: a multifunctional enhancer of viral particle release. Microbes Infect. 5:1029–1039, 2003 ArticlePubMedCAS Google Scholar
6. Stockl J., Vetr H., Majdic O., Zlabinger G., Kuechler E. and Knapp W., Human major group rhino viruses downmodulate the accessory function of monocytes by inducing IL-10. J. Clin. Invest. 104: 957–965, 1999 ArticlePubMedCAS Google Scholar
7. Nelson C.A., Pekosz A., Lee C.A., Diamond M.S. and Fremont D.H., Structure and intracellular targeting of the SARS-coronavirus Orf7a accessory protein. Structure 13: 75–85, 2005 ArticlePubMedCAS Google Scholar
8. Snijder E.J., Bredenbeek P.J., Dobbe J.C., Thiel V., Ziebuhr J., Poon L.L., Guan Y., Rozanov M., Spaan W.J. and Gorbalenya A.E., Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage. J. Mol. Biol. 331: 991–1004, 2003 ArticlePubMedCAS Google Scholar
9. Fielding B.C., Tan Y.J., Shuo S., Tan T.H., Ooi E.E., Lim S.G., Hong W. and Goh P.Y., Characterization of a unique group-specific protein (U122) of the severe acute respiratory syndrome coronavirus. J. Virol. 78: 7311–7318, 2004 ArticlePubMedCAS Google Scholar
10. Tan Y.J., Teng E., Shen S., Tan T.H., Goh P.Y., Fielding B.C., Ooi E.E., Tan H.C., Lim S.G. and Hong W., A novel severe acute respiratory syndrome coronavirus protein, U274, is transported to the cell surface and undergoes endocytosis. J. Virol. 78:6723–6734, 2004 ArticlePubMedCAS Google Scholar
11. Yu C.J., Chen Y.C., Hsiao C.H., Kuo T.C., Chang S.C., Lu C.Y., Wei W.C., Lee C.H., Huang L.M., Chang M.F., Ho H.N. and Lee F.J., Identification of a novel protein 3a from severe acute respiratory syndrome coronavirus. FEBS Lett. 565: 111–116, 2004 ArticlePubMedCAS Google Scholar
12. Tan Y.J., Fielding B.C., Goh P.Y., Shen S., Tan T.H., Lim S.G. and Hong W., Overexpression of 7a, a protein specifically encoded by the severe acute respiratory syndrome coronavirus, induces apoptosis via a caspase-dependent pathway. J. Virol. 78: 14043–14047, 2004 ArticlePubMedCAS Google Scholar
13. Maniatis T., Fritsch E.F. and Sambrook J., Molecular Cloning: a Laboratory Manual. Cold Spring Harbor Laboratory, NY, 1982 Google Scholar
14. Farrow N.A., Muhandiran R., Singer A.U., Pascal S.M., Kay C.M., Gish G., Shoelson S.E., Pawson T., Forman-Kay J.D. and Kay L.E., Backbone dynamics of a free and phosphopeptide-complexed Src homology 2 domain studied by 15N NMR relaxation. Biochemistry 33: 5984–6003, 1994 ArticlePubMedCAS Google Scholar
15. Keller R., Computer Aided Resonance Assignment Tutorial, 1 edn. Cantina Verlag, 2004 Google Scholar
16. Nilges M. and O’Donoghue S.I., Ambiguous NOEs and automated NOE assignment. Progr. Nucl. Magn. Res. Spectr. 32: 107–139, 1998 ArticleCAS Google Scholar
17. Nilges M., A calculation strategy for the structure determination of symmetric dimers by 1H NMR. Proteins 17: 297–309, 1993 ArticlePubMedCAS Google Scholar
18. Koradi R., Billeter M. and Wuthrich K., MOLMOL: a program for display and analysis of macromolecular structures. J. Mol. Graph. 14: 51–55, 1996 ArticlePubMedCAS Google Scholar
19. Laskowski R.A., Rullmann J.A.C., MacArthur M.W., Kaptein R. and Thornton J.M., AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J. Biomol. NMR 8:477–486, 1996 ArticlePubMedCAS Google Scholar
20. Vriend G., What If – a molecular modeling and drug design program. J. Mol. Graph. 8: 52–56, 1990 ArticlePubMedCAS Google Scholar
21. Kabsch W. and Sander C., Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22: 2577–2637, 1983 ArticlePubMedCAS Google Scholar
22. Wang J. and Springer T.A., Structural specializations of immunoglobulin superfamily members for adhesion to integrins and viruses. Immunol. Rev. 163: 197–215, 1998 ArticlePubMedCAS Google Scholar
23. Bork P., Holm L. and Sander C., The immunoglobulin fold. Structural classification, sequence patterns and common core. J. Mol. Biol. 242: 309–320, 1994 PubMedCAS Google Scholar
24. Casasnovas J.M., Stehle T., Liu J.H., Wang J.H. and Springer T.A., A dimeric crystal structure for the N-terminal two domains of intercellular adhesion molecule-1. Proc. Natl. Acad. Sci. U SA 95: 4134–4139, 1998 ArticlePubMedCAS Google Scholar
25. Casasnovas J.M., Springer T.A., Liu J.H., Harrison S.C. and Wang J.H., Crystal structure of ICAM-2 reveals a distinctive integrin recognition surface. Nature 387: 312–315, 1997 ArticlePubMedCAS Google Scholar
26. Vigers G.P., Anderson L.J., Gaffes P. and Brandhuber B.J., Crystal structure of the type-I interleukin-1 receptor complexed with interleukin-lbeta. Nature 386: 190–194, 1997 ArticlePubMedCAS Google Scholar
27. Holm L., Sander C., Touring protein fold space with Dali/FSSP. Nucl. Acids Res. 26: 216–319, 1998 Article Google Scholar
28. Wang C.Y., Naka Y., Liao H., Oz M.C., Springer T.A., Gutierrez-Ramos J.C. and Pinsky D.J., Cardiac graft intercellular adhesion molecule-1 (ICAM-1) and interleukin-1 expression mediate primary isograft failure and induction of ICAM-1 in organs remote from the site of transplantation. Circ. Res. 82:762–772, 1998 PubMedCAS Google Scholar
29. Gahmberg C.G., Tolvanen M. and Kotovuori P., Leukocyte adhesion – structure and function of human leukocyte beta2-integrins and their cellular ligands. Eur. J. Biochem. 245: 215–232, 1997 ArticlePubMedCAS Google Scholar
30. Shimaoka M., Xiao T., Liu J.H., Yang Y., Dong Y., Jun C.D., McCormack A., Zhang R., Joachimiak A., Takagi J., Wang J.H. and Springer T.A., Structures of the alpha L I domain and its complex with ICAM-1 reveal a shape-shifting pathway for integrin regulation. Cell 112: 99–111, 2003 ArticlePubMedCAS Google Scholar
31. Pettersen E.F., Goddard T.D., Huang C.C., Couch G.S., Greenblatt D.M., Meng E.C. and Ferrin T.E., UCSF Chimera – a visualization system for exploratory research and analysis. J. Comput. Chem. 25: 1605–1612, 2004 ArticlePubMedCAS Google Scholar
32. Barton G.J., Alscript – a tool to format multiple sequence alignments. Protein Engineering 6: 37–40, 1993 ArticlePubMedCAS Google Scholar
33. Diamond M.S., Staunton D.E., Marlin S.D. and Springer T.A., Binding of the integrin Mac-1 (CD11b/CD18) to the third immunoglobulin-like domain of ICAM-1 (CD54) and its regulation by glycosylation. Cell 65: 961–971, 1991 ArticlePubMedCAS Google Scholar
34. Diamond M.S., Garcia-Aguilar J., Bickford J.K., Corbi A.L. and Springer T.A., The I domain is a major recognition site on the leukocyte integrin Mac-1 (CD11b/CD18) for four distinct adhesion ligands. J. Cell. Biol. 120: 1031–1043, 1993 ArticlePubMedCAS Google Scholar
35. Vorup-Jensen T., Ostermeier C., Shimaoka M., Hommel U. and Springer T.A., Structure and allosteric regulation of the alpha X beta 2 integrin I domain. Proc. Natl. Acad. Sci. USA 100: 1873–1878, 2003 ArticlePubMedCAS Google Scholar
36. Van der Vieren M., Le Trong H., Wood C.L., Moore P.F., St John T., Staunton D.E. and Gallatin W.M., A novel leukointegrin, alpha d beta 2, binds preferentially to ICAM-3. Immunity 3: 683–690, 1995 ArticlePubMed Google Scholar
37. Fortin J.F., Cantin R., Lamontagne G. and Tremblay M., Host-derived ICAM-1 glycoproteins incorporated on human immunodeficiency virus type 1 are biologically active and enhance viral infectivity. J. Virol. 71: 3588–3596, 1997 PubMedCAS Google Scholar
38. Schubert U. and Strebel K., Differential activities of the human immunodeficiency virus type 1-encoded Vpu protein are regulated by phosphorylation and occur in different cellular compartments. J. Virol. 68: 2260–2271, 1994 PubMedCAS Google Scholar
39. Schubert U., Antón L.C., Bacók I., Cox J.H., Bour S., Bennink J.R., Orlowski M., Strebel K. and Yewdell J.W., CD4 glycoprotein degradation induced by human immunodeficiency virus type 1 Vpu protein requires the function of proteasomes and the ubiquitin-conjugating pathway. J. Virol. 72: 2280–2288, 1998 PubMedCAS Google Scholar
40. Bleijs D.A., Geijtenbeek T.B., Figdor C.G. and van Kooyk Y., DC-SIGN and LFA-1: a battle for ligand. Trends Immunol. 22: 457–463, 2001 ArticlePubMedCAS Google Scholar
41. Arnaout M.A., Leukocyte adhesion molecules deficiency: its structural basis, pathophysiology and implications for modulating the inflammatory response. Immunol. Rev. 114: 145–180, 1990 ArticlePubMedCAS Google Scholar
42. Yamaguchi N., Kubo C., Masuhiro Y., Lally E.T., Koga T. and Hanazawa S., Tumor necrosis factor alpha enhances Actinobacillus actinomycetemcomitans leukotoxin-induced HL-60 cell apoptosis by stimulating lymphocyte function-associated antigen 1 expression. Infect. Immun. 72: 269–276, 2004 ArticlePubMedCAS Google Scholar
43. Cui W., Fan Y., Wu W., Zhang F., Wang J.Y. and Ni A.P., Expression of lymphocytes and lymphocyte subsets in patients with severe acute respiratory syndrome. Clin. Infect. Dis. 37:857–859, 2003 ArticlePubMed Google Scholar
44. Cloyd M.W., Chen J.J. and Wang I., How does HIV cause AIDS? The homing theory. Mol. Med. Today 6: 108–111, 2000 ArticlePubMedCAS Google Scholar
45. Rösch P. and Wiilbold D. Is EIAV Tat protein a homeodomain? Science 272: 1672, 1996 ArticlePubMed Google Scholar
46. Willbold P., Metzger A., Sticht H., Voit R., Gallert K.C., Dank N., Bayer P., Krauss G., Goody R.S. and Rösch P. Equine infections anemia virus transactivator is a homeodomai type protein. J. Mol. Biol. 277: 749–755, 1998 ArticlePubMedCAS Google Scholar
47. Willbold P., Hoffmann S. and Rösch P. Secondary structure and tertially fold of the human immunodeficiency. Eur. J. Biochem. 245: 581–588, 1997 ArticlePubMedCAS Google Scholar
48. González M.E. and Carrasco L. The human immunodeficiency virus type 1 Vpu protein enhances membrane permeability. Biochemistry. 37: 13710–13719, 1998 ArticlePubMed Google Scholar