Ursane-type triterpene oligoglycosides with anti-hepatosteatosis and anti-hyperlipidemic activity from the leaves of Ilex paraguariensis A. St.-Hil. (original) (raw)

References

  1. The Plant List. http://www.theplantlist.org/tpl1.1/record/kew-2861242. Accessed 18 Dec 2021.
  2. Gruenwald J, Brendler T, Jaenicke C (2007) PDR for herbal medicines, 4th edn. Thomson Healthcare Inc., Montvale, pp 572–573
    Google Scholar
  3. Heck CI, de Mejia EG (2007) Yerba mate tea (Ilex paraguariensis): a comprehensive review on chemistry, health implications, and technological considerations. J Food Sci 72:R138–R151
    Article CAS PubMed Google Scholar
  4. Bracesco N, Sanchez AG, Contreras V, Menini T, Gugliucci A (2011) Recent advances on Ilex paraguariensis research: minireview. J Ethnopharmacol 136:378–384
    Article CAS PubMed Google Scholar
  5. Gambero A, Ribeiro ML (2015) The positive effects of yerba maté (Ilex paraguariensis) in obesity. Nutrients 7:730–750
    Article PubMed PubMed Central CAS Google Scholar
  6. Cardozo Junior EL, Morand C (2016) Interest of mate (Ilex paraguariensis A. St.-Hil.) as a new natural functional food to preserve human cardiovascular health—a review. J Funct Foods 21:440–454
    Article CAS Google Scholar
  7. Gan R-Y, Zhang D, Wang M, Corke H (2018) Health benefits of bioactive compounds from the genus Ilex, a source of traditional caffeinated beverages. Nutrients 10:1682
    Article PubMed Central CAS Google Scholar
  8. Sugimoto S, Nakamura S, Yamamoto S, Yamashita C, Oda Y, Matsuda H, Yoshikawa M (2009) Brazilian natural medicines. III. Structures of triterpene oligoglycosides and lipase inhibitors from mate, leaves of Ilex paraguariensis. Chem Pharm Bull 57:257–261
    Article CAS Google Scholar
  9. Hussein GME, Matsuda H, Nakamura S, Hamao M, Akiyama T, Tamura K, Yoshikawa M (2011) Mate tea (Ilex paraguariensis) promotes satiety and body weight lowering in mice: involvement of glucagon-like peptide-1. Biol Pharm Bull 34:1849–1855
    Article CAS PubMed Google Scholar
  10. Hussein GME, Matsuda H, Nakamura S, Akiyama T, Tamura K, Yoshikawa M (2011) Protective and ameliorative effects of maté (Ilex paraguariensis) on metabolic syndrome in TSOD mice. Phytomedicine 19:88–97
    Article CAS PubMed Google Scholar
  11. Zapata FJ, Rebollo-Hernanz M, Novakofski JE, Nakamura MT, de Mejia EG (2020) Caffeine, but not other phytochemicals, in mate tea (Ilex paraguariensis St. Hilaire) attenuates high-fat-high-sucrose-diet-driven lipogenesis and body fat accumulation. J Funct Foods 64:103646
    Article CAS Google Scholar
  12. Rocha DS, Model JFA, Von Dentz M, Maschio J, Ohlweiler R, Lima MV, de Souza SK, Sarapio E, Vogt ÉL, Waszczuk M, Martiny S, Bassani VL, Kucharski LC (2021) Adipose tissue of female Wistar rats respond to Ilex paraguariensis treatment after ovariectomy surgery. J Tradit Complement Med 11:238–248
    Article PubMed Google Scholar
  13. Gebara KS, Gasparotto Junior A, Palozi RAC, Morand C, Bonetti CI, Gozzi PT, de Mello MRF, Costa TA, Cardozo Junior EL (2021) A randomized crossover intervention study on the effect a standardized maté extract (Ilex paraguariensis A. St.-Hil.) in men predisposed to cardiovascular risk. Nutrients 13:14
    Article CAS Google Scholar
  14. Medeiros MS, Schumacher-Schuh AF, Altmann V, de Mello Rieder CR (2021) A case-control study of the effects of Chimarrão (Ilex paraguariensis) and coffee on Parkinson’s disease. Front Neurol 12:619535
    Article PubMed PubMed Central Google Scholar
  15. Lorini A, Damin FM, de Oliveira DN, Crizel RL, Godoy HT, Galli V, Meinhart AD (2021) Characterization and quantification of bioactive compounds from Ilex peraguariensis residue by HPLC-ESI-QTOF-MS from plants cultivated under different cultivation systems. J Food Sci 86:1599–1619
    Article CAS PubMed Google Scholar
  16. Muraoka O, Morikawa T, Zhang Y, Ninomiya K, Nakamura S, Matsuda H, Yoshikawa M (2009) Novel megastigmanes with lipid accumulation inhibitory and lipid metabolism-promoting activities in HepG2 cells from Sedum sarmentosum. Tetrahedron 65:4142–4148
    Article CAS Google Scholar
  17. Morikawa T, Ninomiya K, Zhang Y, Yamada T, Nakamura S, Matsuda H, Muraoka O, Hayakawa T, Yoshikawa M (2012) Flavonol glycosides with lipid accumulation inhibitory activity from Sedum sarmentosum. Phytochem Lett 5:53–58
    Article CAS Google Scholar
  18. Morikawa T, Ninomiya K, Miyake S, Miki Y, Okamoto M, Yoshikawa M, Muraoka O (2013) Flavonol glycosides with lipid accumulation inhibitory activity and simultaneous quantitative analysis of 15 polyphenols and caffeine in the flower buds of Camellia sinensis from different regions by LCMS. Food Chem 140:353–360
    Article CAS PubMed Google Scholar
  19. Morikawa T, Nagatomo A, Oka T, Miki Y, Taira N, Shibano-Kitahara M, Hori Y, Muraoka O, Ninomiya K (2019) Glucose tolerance-improving activity of helichrysoside in mice and its structural requirements for promoting glucose and lipid metabolism. Int J Mol Sci 20:6322
    Article CAS PubMed Central Google Scholar
  20. Shimoda H, Ninomiya K, Nishida N, Yoshino T, Morikawa T, Matsuda H, Yoshikawa M (2003) Anti-hyperlipidemic sesquiterpenes and new sesquiterpene glycosides from the leaves of artichoke (Cynara scolymus L.): structure requirement and mode of action. Bioorg Med Chem Lett 13:223–228
    Article CAS PubMed Google Scholar
  21. Yoshikawa M, Morikawa T, Yamamoto K, Kato Y, Nagatomo A, Matsuda H (2005) Floratheasaponins A-C, acylated oleanane-type triterpene oligoglycosides with anti-hyperlipidemic activities from flowers of the tea plant (Camellia sinensis). J Nat Prod 68:1360–1365
    Article CAS PubMed Google Scholar
  22. Matsuda H, Nakamura S, Morikawa T, Muraoka O, Yoshikawa M (2016) New biofunctional effects of the flower buds of Camellia sinensis and its bioactive acylated oleanane-type triterpene oligoglycosides. J Nat Med 70:689–701
    Article CAS PubMed PubMed Central Google Scholar
  23. Morikawa T, Li X, Nishida E, Ito Y, Matsuda H, Nakamura S, Muraoka O, Yoshikawa M (2008) Perennisosides I-VII, acylated triterpene saponins with antihyperlipidemic activities from the flowers of Bellis perennis. J Nat Prod 71:828–835
    Article CAS PubMed Google Scholar
  24. Morikawa T, Muraoka O, Yoshikawa M (2010) Pharmaceutical food science: search for anti-obese constituents from medicinal foods—anti-hyperlipidemic saponin constituents from the flowers of Bellis perennis. Yakugaku Zasshi 130:673–678
    Article CAS PubMed Google Scholar
  25. Asao Y, Morikawa T, Xie Y, Okamoto M, Hamao M, Matsuda H, Muraoka O, Yuan D, Yoshikawa M (2009) Structures of acetylated oleanane-type triterpene saponins, rarasaponins IV, V, and VI, and anti-hyperlipidemic constituents from the pericarps of Sapindus rarak. Chem Pharm Bull 57:198–203
    Article CAS Google Scholar
  26. Morikawa T, Chaipech S, Matsuda H, Hamao M, Umeda Y, Sato H, Tamura H, Ninomiya K, Yoshikawa M, Pongpiriyadacha Y, Hayakawa T, Muraoka O (2012) Anti-hyperlipidemic constituents from the bark of Shorea roxburghii. J Nat Med 66:516–524
    Article CAS PubMed Google Scholar
  27. Melek FR, Miyase T, El-Gindy MR, Abdel-Khalik SM, Ghaly NS, El-Kady M (2000) Saponins from Fagonia glutinosa. Pharmazie 55:772–776
    CAS PubMed Google Scholar
  28. Taketa ATC, Breitmaier E, Schenkel EP (2004) Triterpenes and triterpenoidal glycosides from the fruits of Ilex paraguariensis (Maté). J Braz Chem Soc 15:205–211
    Article CAS Google Scholar
  29. Nakanishi T, Tanaka K, Murata H, Somekawa M, Inada A (1993) Phytochemical studies of seeds of medicinal plants. III. Ursolic acid and oleanolic acid glycosides from seeds of Patrinia scabiosaefolia Fischer. Chem Pharm Bull 41:183–186
    Article CAS Google Scholar
  30. Gosmann G, Schenkel EP (1989) A new saponin from mate, Ilex paraguariensis. J Nat Prod 52:1367–1370
    Article CAS Google Scholar
  31. De Andrade FDP, Piacente S, Pizza C, Vilegas W (2002) Studies on the constituents of a Brazilian folk infusion. Isolation and structure elucidation of new triterpene saponins from Ilex amara leaves. J Agric Food Chem 50:255–261
    Article CAS Google Scholar
  32. Gosmann G, Guillaume D (1995) Triterpenoid saponins from Ilex paraguariensis. J Nat Prod 58:438–441
    Article CAS PubMed Google Scholar
  33. Kraemer KH, Taketa ATC, Schenkel EP, Gosmann G, Guillaume D (1996) Matesaponin 5, a highly polar saponin from Ilex paraguariensis. Phytochemistry 42:1119–1122
    Article CAS PubMed Google Scholar
  34. Nishimura K, Miyase T, Noguchi H (1999) Triterpenoid saponins from Ilex kudincha. J Nat Prod 62:1128–1133
    Article CAS PubMed Google Scholar
  35. Ouyang M-A, Yang C-R, Chen Z-L, Wang H-Q (1996) Tritepenes and triterpenoid glycosides from the leaves of Ilex kudincha. Phytochemistry 41:871–877
    Article CAS PubMed Google Scholar
  36. Ouyang M-A, Yang C-R, Wu Z-J (2001) Triterpenoid saponins from the leaves of Ilex kudincha. JANPR 3:31–42
    CAS PubMed Google Scholar
  37. Shimizu S, Ishihara N, Umehara K, Miyase T, Ueno A (1988) Sesquiterpene glycosides and saponins from Cynara cardunculus L. Chem Pharm Bull 36:2466–2474
    Article CAS Google Scholar
  38. Kinjo J, Uemura H, Nakamura M, Nohara T (1994) Two new triterpenoidal glycosides from Medicago polymorpha L. Chem Pharm Bull 42:1339–1341
    Article CAS Google Scholar
  39. Hata C, Kakuno M, Yoshikawa K, Arihara S (1992) Triterpenoid saponins of Aquifoliaceous plants. V. Ilexosides XV–XIX from the barks of Ilex crenata Thunb. Chem Pharm Bull 40:1990–1992
    Article CAS Google Scholar
  40. Ouyang M-A, Wang H-Q, Liu Y-Q, Yang C-R (1997) Triterpenoid saponins from the leaves of Ilex latifolia. Phytochemistry 45:1501–1505
    Article CAS Google Scholar
  41. Song N, Xu W, Guan H, Liu X, Wang Y, Nie X (2007) Several flavonoids from Capsella bursa-pastoris (L.) Medic. Asian J Tradit Med 2:218–222
    CAS Google Scholar
  42. These isolates were identified by comparison of their physical and spectral data with those of commercially available samples
  43. Zhang Y, Nakamura S, Pongpiriyadacha Y, Matsuda H, Yoshikawa M (2008) Absolute structures of new megastigmane glycosides, foliasalaciosides E1, E2, E3, F, G, H, and I from the leaves of Salacia chinensis. Chem Pharm Bull 56:547–553
    Article CAS Google Scholar
  44. Nakatani N, Kayano S, Kikuzaki H, Sumino K, Katagiri K, Mitani T (2000) Identification, quantitative determination, and antioxidative activities of chlorogenic acid isomers in Prune (Prunus domestica L.). J Agric Food Chem 48:5512–5516
    Article CAS PubMed Google Scholar
  45. Grassi-Zampieron R, França LV, Carollo CA, do Carmo Vieira M, Oliveros-Bastidas A, de Siqueira JM (2010) Comparative profiles of Achyrocline alata (Kunth) DC. and A. satureioides (Lam.) DC., Asteraceae, applying HPLC-DAD-MS. Braz J Pharmacogn 20:575–579
  46. Lee EJ, Kim JS, Kim HP, Lee J-H, Kang SS (2010) Phenolic constituents from the flower buds of Lonicera japonica and their 5-lipoxygenase inhibitory activities. Food Chem 120:134–139
    Article CAS Google Scholar
  47. Gao H, Huang Y-N, Gao B, Xu P-Y, Inagaki C, Kawabata J (2008) α-Glucosidase inhibitory effect by the flower buds of Tussilago farfara L. Food Chem 106:1195–1201
    Article CAS Google Scholar
  48. Kim JY, Cho J-Y, Ma Y-K, Park KY, Lee S-H, Ham K-S, Lee HJ, Park K-H, Moon J-H (2011) Dicaffeoylquinic acid derivatives and flavonoid glucosides from glasswort (Salicornia herbacea L.) and their antioxidative activity. Food Chem 125:55–62
    Article CAS Google Scholar
  49. Morikawa T, Imura K, Akagi Y, Muraoka O, Ninomiya K (2018) Ellagic acid glycosides with hepatoprotective activity from traditional Tibetan medicine Potentilla anserina. J Nat Med 72:317–325
    Article CAS PubMed Google Scholar
  50. Morikawa T, Nakanishi Y, Inoue N, Manse Y, Matsuura H, Hamasaki S, Yoshikawa M, Muraoka O, Ninomiya K (2020) Acylated iridoid glycosides with hyaluronidase inhibitory activity from the rhizomes of Picrorhiza kurroa Royle ex Benth. Phytochemistry 169:112185
    Article CAS PubMed Google Scholar
  51. Morikawa T, Inoue N, Nakanishi Y, Manse Y, Matsuura H, Okino K, Hamasaki S, Yoshikawa M, Muraoka O, Ninomiya K (2020) Collagen synthesis-promoting and collagenase inhibitory activities of constituents isolated from the rhizomes of Picrorhiza kurroa Royle ex Benth. Fitoterapia 143:104584
    Article CAS PubMed Google Scholar
  52. Hidaka K, Ito M, Matsuda Y, Kohda H, Yamasaki K, Yamahara J, Chisaka T, Kawakami Y, Sato T, Kagei K (1987) New triterpene saponins from Ilex pubescens. Chem Pharm Bull 35:524–529
    Article CAS Google Scholar
  53. Kakuno T, Yoshikawa K, Arihara S (1992) Triterpenoid saponins from Ilex crenata fruit. Phytochemistry 31:3553–3557
    Article CAS Google Scholar
  54. Cheng J-J, Zhang L-J, Cheng H-L, Chiou C-T, Lee I-J, Kuo Y-H (2010) Cytotoxic hexacyclic triterpene acids from Euscaphis japonica. J Nat Prod 73:1655–1658
    Article CAS PubMed Google Scholar
  55. Morikawa T, Ninomiya K, Imura K, Yamaguchi T, Akagi Y, Yoshikawa M, Hayakawa T, Muraoka O (2014) Hepetoprotective triterpenes from traditional Tibetan medicine Potentilla anserina. Phytochemistry 102:169–181
    Article CAS PubMed Google Scholar
  56. El-Hassan AY, Ibrahim EM, Al-Mulhim FA, Nabhan AA, Chammas MY (1992) Fatty infiltration of the liver: analysis of prevalence, radiological and clinical features and influence on patient management. Br J Radiol 65:774–778
    Article CAS PubMed Google Scholar
  57. Bellentani S, Tiribelli C, Saccoccio G, Sodde M, Fratti N, de Martin C, Cristianini G (1994) Prevalence of chronic liver disease in the general population of northern Italy: the dionysos study. Hepatology 20:1442–1449
    Article CAS PubMed Google Scholar
  58. Marchesini G, Brizi M, Morselli-Labate AM, Bianchi G, Bugianesi E, McCullough AJ, Forlani G, Melchionda N (1999) Association of nonalcoholic fatty liver disease with insulin resistance. Am J Med 107:450–455
    Article CAS PubMed Google Scholar
  59. Marceau P, Biron S, Hould F-S, Marceau S, Simard S, Thung SN, Kral JG (1999) Liver pathology and the metabolic syndrome X in severe obesity. J Clin Endocrinol Metab 84:1513–1517
    Article CAS PubMed Google Scholar
  60. Auwerx J, Schoonjans K, Fruchart J-C, Staels B (1996) Regulation of triglyceride metabolism by PPARs: fibrates and thiazolidinediones have distinct effects. J Atheroscler Thromb 3:81–89
    Article CAS PubMed Google Scholar

Download references