Boosting the immune response: the use of iNKT cell ligands as vaccine adjuvants (original) (raw)
References
Bauer C, Dauer M, Saraj S, Schnurr M, Bauernfeind F, Sterzik A, Junkmann J, Jakl V, Kiefl R, Oduncu F, Emmerich B, Mayr D, Mussack T, Bruns C, Rüttinger D, Conrad C, Jauch K W, Endres S, Eigler A (2011). Dendritic cell-based vaccination of patients with advanced pancreatic carcinoma: results of a pilot study. Cancer Immunol Immunother, 60(8): 1097–1107 ArticlePubMedCAS Google Scholar
Blauvelt M L, Khalili M, Jaung W, Paulsen J, Anderson A C, Brian Wilson S, Howell A R (2008). Alpha-S-GalCer: synthesis and evaluation for iNKT cell stimulation. Bioorg Med Chem Lett, 18(24): 6374–6376 ArticlePubMedCAS Google Scholar
Burdin N, Brossay L, Koezuka Y, Smiley S T, Grusby M J, Gui M, Taniguchi M, Hayakawa K, Kronenberg M (1998). Selective ability of mouse CD1 to present glycolipids: alpha-galactosylceramide specifically stimulates V alpha 14+ NK T lymphocytes. J Immunol, 161(7): 3271–3281 PubMedCAS Google Scholar
Carnaud C, Lee D, Donnars O, Park S H, Beavis A, Koezuka Y, Bendelac A (1999). Cutting edge: Cross-talk between cells of the innate immune system: NKT cells rapidly activate NK cells. J Immunol, 163(9): 4647–4650 PubMedCAS Google Scholar
Chung Y, Qin H, Kang C Y, Kim S, Kwak L W, Dong C (2007). An NKT-mediated autologous vaccine generates CD4 T-cell dependent potent antilymphoma immunity. Blood, 110(6): 2013–2019 ArticlePubMedCAS Google Scholar
Clyde D F (1975). Immunization of man against falciparum and vivax malaria by use of attenuated sporozoites. Am J Trop Med Hyg, 24(3): 397–401 PubMedCAS Google Scholar
Courtney A N, Thapa P, Singh S, Wishahy A M, Zhou D, Sastry K J (2011). Intranasal but not intravenous delivery of the adjuvant alphagalactosylceramide permits repeated stimulation of natural killer T cells in the lung. Eur J Immunol, 41(11):3312–3322 ArticlePubMedCAS Google Scholar
Crowe N Y, Coquet J M, Berzins S P, Kyparissoudis K, Keating R, Pellicci D G, Hayakawa Y, Godfrey D I, Smyth M J (2005). Differential antitumor immunity mediated by NKT cell subsets in vivo. J Exp Med, 202(9): 1279–1288 ArticlePubMedCAS Google Scholar
Fleuridor R, Wilson B, Hou R, Landay A, Kessler H, Al-Harthi L (2003). CD1d-restricted natural killer T cells are potent targets for human immunodeficiency virus infection. Immunology, 108(1): 3–9 ArticlePubMedCAS Google Scholar
Fowlkes B J, Kruisbeek A M, Ton-That H, Weston M A, Coligan J E, Schwartz R H, Pardoll D M (1987). A novel population of T-cell receptor alpha beta-bearing thymocytes which predominantly expresses a single V beta gene family. Nature, 329(6136): 251–254 ArticlePubMedCAS Google Scholar
Giaccone G, Punt C J, Ando Y, Ruijter R, Nishi N, Peters M, von Blomberg B M, Scheper R J, van der Vliet H J, van den Eertwegh A J, Roelvink M, Beijnen J, Zwierzina H, Pinedo HM (2002). A phase I study of the natural killer T-cell ligand alpha-galactosylceramide (KRN7000) in patients with solid tumors. Clin Cancer Res, 8(12): 3702–3709 PubMedCAS Google Scholar
Gonzalez-Aseguinolaza G, Van Kaer L, Bergmann C C, Wilson J M, Schmieg J, Kronenberg M, Nakayama T, Taniguchi M, Koezuka Y, Tsuji M (2002). Natural killer T cell ligand alpha-galactosylceramide enhances protective immunity induced by malaria vaccines. J Exp Med, 195(5): 617–624 ArticlePubMedCAS Google Scholar
Hogan A E, O’Reilly V, Dunne M R, Dere R T, Zeng S G, O’Brien C, Amu S, Fallon P G, Exley M A, O’Farrelly C, Zhu X, Doherty D G (2011). Activation of human invariant natural killer T cells with a thioglycoside analogue of α-galactosylceramide. Clin Immunol, 140(2): 196–207 ArticlePubMedCAS Google Scholar
Huang Y, Chen A, Li X, Chen Z, Zhang W, Song Y, Gurner D, Gardiner D, Basu S, Ho D D, Tsuji M (2008). Enhancement of HIV DNA vaccine immunogenicity by the NKT cell ligand, alpha-galactosylceramide. Vaccine, 26(15): 1807–1816 ArticlePubMedCAS Google Scholar
Joyce S, Woods A S, Yewdell J W, Bennink J R, De Silva A D, Boesteanu A, Balk S P, Cotter R J, Brutkiewicz R R (1998). Natural ligand of mouse CD1d1: cellular glycosylphosphatidylinositol. Science, 279(5356): 1541–1544 ArticlePubMedCAS Google Scholar
Kamijuku H, Nagata Y, Jiang X, Ichinohe T, Tashiro T, Mori K, Taniguchi M, Hase K, Ohno H, Shimaoka T, Yonehara S, Odagiri T, Tashiro M, Sata T, Hasegawa H, Seino K I (2008). Mechanism of NKT cell activation by intranasal coadministration of alphagalactosylceramide, which can induce cross-protection against influenza viruses. Mucosal Immunol, 1(3): 208–218 ArticlePubMedCAS Google Scholar
Kawakami K, Kinjo Y, Yara S, Koguchi Y, Uezu K, Nakayama T, Taniguchi M, Saito A (2001). Activation of Valpha14(+) natural killer T cells by alpha-galactosylceramide results in development of Th1 response and local host resistance in mice infected with Cryptococcus neoformans. Infect Immun, 69(1): 213–220 ArticlePubMedCAS Google Scholar
Kawano T, Cui J, Koezuka Y, Toura I, Kaneko Y, Motoki K, Ueno H, Nakagawa R, Sato H, Kondo E, Koseki H, Taniguchi M (1997). CD1d-restricted and TCR-mediated activation of valpha14 NKTcells by glycosylceramides. Science, 278(5343): 1626–1629 ArticlePubMedCAS Google Scholar
Kim D, Hung C F, Wu T C, Park Y M (2010). DNA vaccine with α-galactosylceramide at prime phase enhances anti-tumor immunity after boosting with antigen-expressing dendritic cells. Vaccine, 28(45): 7297–7305 ArticlePubMedCAS Google Scholar
Kim Y J, Ko H J, Kim Y S, Kim D H, Kang S, Kim JM, Chung Y, Kang C Y (2008). Alpha-Galactosylceramide-loaded, antigen-expressing B cells prime a wide spectrum of antitumor immunity. Int J Cancer, 122(12): 2774–2783 ArticlePubMedCAS Google Scholar
Kinjo Y, Tupin E, Wu D, Fujio M, Garcia-Navarro R, Benhnia M R, Zajonc DM, Ben-Menachem G, Ainge G D, Painter G F, Khurana A, Hoebe K, Behar S M, Beutler B, Wilson I A, Tsuji M, Sellati T J, Wong C H, Kronenberg M (2006). Natural killer T cells recognize diacylglycerol antigens from pathogenic bacteria. Nat Immunol, 7(9): 978–986 ArticlePubMedCAS Google Scholar
Kinjo Y, Wu D, Kim G, Xing G W, Poles M A, Ho D D, Tsuji M, Kawahara K, Wong C H, Kronenberg M (2005). Recognition of bacterial glycosphingolipids by natural killer T cells. Nature, 434(7032): 520–525 ArticlePubMedCAS Google Scholar
Ko H J, Lee J M, Kim Y J, Kim Y S, Lee K A, Kang C Y (2009). Immunosuppressive myeloid-derived suppressor cells can be converted into immunogenic APCs with the help of activated NKT cells: an alternative cell-based antitumor vaccine. J Immunol, 182(4): 1818–1828 ArticlePubMedCAS Google Scholar
Ko S Y, Ko H J, Chang W S, Park S H, Kweon M N, Kang C Y (2005). alpha-Galactosylceramide can act as a nasal vaccine adjuvant inducing protective immune responses against viral infection and tumor. J Immunol, 175(5): 3309–3317 PubMedCAS Google Scholar
Kobayashi E, Motoki K, Uchida T, Fukushima H, Koezuka Y (1995). KRN7000, a novel immunomodulator, and its antitumor activities. Oncol Res, 7(10–11): 529–534 PubMedCAS Google Scholar
Kopecky-Bromberg S A, Fraser K A, Pica N, Carnero E, Moran T M, Franck RW, Tsuji M, Palese P (2009). Alpha-C-galactosylceramide as an adjuvant for a live attenuated influenza virus vaccine. Vaccine, 27(28): 3766–3774 ArticlePubMedCAS Google Scholar
Koseki H, Asano H, Inaba T, Miyashita N, Moriwaki K, Lindahl K F, Mizutani Y, Imai K, Taniguchi M (1991). Dominant expression of a distinctive V14+ T-cell antigen receptor alpha chain in mice. Proc Natl Acad Sci USA, 88(17): 7518–7522 ArticlePubMedCAS Google Scholar
Lee P T, Benlagha K, Teyton L, Bendelac A (2002). Distinct functional lineages of human V(alpha)24 natural killer T cells. J Exp Med, 195(5): 637–641 ArticlePubMedCAS Google Scholar
Lee Y S, Lee K A, Lee J Y, Kang M H, Song Y C, Baek D J, Kim S, Kang C Y (2011). An α-GalCer analogue with branched acyl chain enhances protective immune responses in a nasal influenza vaccine. Vaccine, 29(3): 417–425 ArticlePubMedCAS Google Scholar
Li X, Fujio M, Imamura M, Wu D, Vasan S, Wong C H, Ho D D, Tsuji M (2010a). Design of a potent CD1d-binding NKT cell ligand as a vaccine adjuvant. Proc Natl Acad Sci USA, 107(29): 13010–13015 ArticlePubMed Google Scholar
Li Y, Girardi E, Wang J, Yu E D, Painter G F, Kronenberg M, Zajonc D M (2010b). The Vα14 invariant natural killer T cell TCR forces microbial glycolipids and CD1d into a conserved binding mode. J Exp Med, 207(11): 2383–2393 ArticlePubMedCAS Google Scholar
Lu X, Song L, Metelitsa L S, Bittman R (2006). Synthesis and evaluation of an alpha-C-galactosylceramide analogue that induces Th1-biased responses in human natural killer T cells. ChemBioChem, 7(11): 1750–1756 ArticlePubMedCAS Google Scholar
Makino Y, Kanno R, Ito T, Higashino K, Taniguchi M (1995). Predominant expression of invariant V alpha 14 + TCR alpha chain in NK1.1+ T cell populations. Int Immunol, 7(7): 1157–1161 ArticlePubMedCAS Google Scholar
Matangkasombut P, Pichavant M, Yasumi T, Hendricks C, Savage P B, Dekruyff R H, Umetsu D T (2008). Direct activation of natural killer T cells induces airway hyperreactivity in nonhuman primates. J Allergy Clin Immunol, 121(5): 1287–1289 ArticlePubMedCAS Google Scholar
Mattner J, Debord K L, Ismail N, Goff R D, Cantu C 3rd, Zhou D, Saint-Mezard P, Wang V, Gao Y, Yin N, Hoebe K, Schneewind O, Walker D, Beutler B, Teyton L, Savage P B, Bendelac A (2005). Exogenous and endogenous glycolipid antigens activate NKT cells during microbial infections. Nature, 434(7032): 525–529 ArticlePubMedCAS Google Scholar
Miyamoto K, Miyake S, Yamamura T (2001). A synthetic glycolipid prevents autoimmune encephalomyelitis by inducing TH2 bias of natural killer T cells. Nature, 413(6855): 531–534 ArticlePubMedCAS Google Scholar
Molling JW, Kölgen W, Van der Vliet H J, Boomsma MF, Kruizenga H, Smorenburg C H, Molenkamp B G, Langendijk J A, Leemans C R, von Blomberg B M, Scheper R J, Van den Eertwegh A J (2005). Peripheral blood IFN-gamma-secreting Valpha24+ Vbeta11+ NKT cell numbers are decreased in cancer patients independent of tumor type or tumor load. Int J Cancer, 116(1): 87–93 ArticlePubMedCAS Google Scholar
Motsinger A, Haas D W, Stanic A K, Van Kaer L, Joyce S, Unutmaz D (2002). CD1d-restricted human natural killer T cells are highly susceptible to human immunodeficiency virus 1 infection. J Exp Med, 195(7): 869–879 ArticlePubMedCAS Google Scholar
Nakagawa R, Serizawa I, Motoki K, Sato M, Ueno H, Iijima R, Nakamura H, Shimosaka A, Koezuka Y (2000). Antitumor activity of alpha-galactosylceramide, KRN7000, in mice with the melanoma B16 hepatic metastasis and immunohistological study of tumor nfiltrating cells. Oncol Res, 12(2): 51–58 PubMedCAS Google Scholar
Nam J H, Kim E H, Song D, Choi Y K, Kim J K, Poo H (2011). Emergence of mammalian species-infectious and -pathogenic avian influenza H6N5 virus with no evidence of adaptation. J Virol, 7(23):3281–3286 Google Scholar
Natori T, Akimoto K, Motoki K, Koezuka Y, Higa T (1997). Development of KRN7000, derived from agelasphin produced by okinawan sponge. Nihon Yakurigaku Zasshi, 110Suppl 163P–68P Article Google Scholar
Niemeyer M, Darmoise A, Mollenkopf H J, Hahnke K, Hurwitz R, Besra G S, Schaible U E, Kaufmann S H (2008). Natural killer T-cell characterization through gene expression profiling: an account of versatility bridging T helper type 1 (Th1), Th2 and Th17 immune responses. Immunology, 123(1): 45–56 ArticlePubMedCAS Google Scholar
Osada T, Morse M A, Lyerly H K, Clay T M (2005). Ex vivo expanded human CD4+ regulatory NKT cells suppress expansion of tumor antigen-specific CTLs. Int Immunol, 17(9): 1143–1155 ArticlePubMedCAS Google Scholar
Parekh V V, Wilson M T, Olivares-Villagómez D, Singh A K, Wu L, Wang C R, Joyce S, Van Kaer L (2005). Glycolipid antigen induces long-term natural killer T cell anergy in mice. J Clin Invest, 115(9): 2572–2583 ArticlePubMedCAS Google Scholar
Petersen T R, Sika-Paotonu D, Knight D A, Dickgreber N, Farrand K J, Ronchese F, Hermans I F (2010). Potent anti-tumor responses to immunization with dendritic cells loaded with tumor tissue and an NKT cell ligand. Immunol Cell Biol, 88(5): 596–604 ArticlePubMedCAS Google Scholar
Porcelli S, Gerdes D, Fertig A M, Balk S P (1996). Human T cells expressing an invariant V alpha 24-J alpha Q TCR alpha are CD4-and heterogeneous with respect to TCR beta expression. Hum Immunol, 48(1–2): 63–67 ArticlePubMedCAS Google Scholar
Roberts T J, Sriram V, Spence P M, Gui M, Hayakawa K, Bacik I, Bennink J R, Yewdell J W, Brutkiewicz R R (2002). Recycling CD1d1 molecules present endogenous antigens processed in an endocytic compartment to NKT cells. J Immunol, 168(11): 5409–5414 PubMedCAS Google Scholar
Rui-Hua Z, Hong-Yu C, Ming-Ju X, Kai L, Hua-Lan C, Cun-Lian W, Dong W, Cun-Xin L, Tong X (2011). Molecular characterization and pathogenicity of swine influenza H9N2 subtype virus A/swine/HeBei/012/2008/(H9N2). Acta Virol, 55(3): 219–226 ArticlePubMedCAS Google Scholar
Sandberg J K, Fast N M, Palacios E H, Fennelly G, Dobroszycki J, Palumbo P, Wiznia A, Grant R M, Bhardwaj N, Rosenberg M G, Nixon D F (2002). Selective loss of innate CD4(+) Valpha 24 natural killer T cells in human immunodeficiency virus infection. J Virol, 76(15): 7528–7534 ArticlePubMedCAS Google Scholar
Schmieg J, Yang G, Franck R W, Tsuji M (2003). Superior protection against malaria and melanoma metastases by a C-glycoside analogue of the natural killer T cell ligand alpha-Galactosylceramide. J Exp Med, 198(11): 1631–1641 ArticlePubMedCAS Google Scholar
Schmieg J, Yang G, Franck R W, Tsuji M (2010). A multifactorial mechanism in the superior antimalarial activity of alpha-C-GalCer. J Biomed Biotechnol, 2010: 283612 ArticlePubMedCAS Google Scholar
Schofield L, Villaquiran J, Ferreira A, Schellekens H, Nussenzweig R, Nussenzweig V (1987). Gamma interferon, CD8+ T cells and antibodies required for immunity to malaria sporozoites. Nature, 330(6149): 664–666 ArticlePubMedCAS Google Scholar
Shibolet O, Alper R, Zlotogarov L, Thalenfeld B, Engelhardt D, Rabbani E, Ilan Y (2003). NKTand CD8 lymphocytes mediate suppression of hepatocellular carcinoma growth via tumor antigen-pulsed dendritic cells. Int J Cancer, 106(2): 236–243 ArticlePubMedCAS Google Scholar
Silk J D, Hermans I F, Gileadi U, Chong T W, Shepherd D, Salio M, Mathew B, Schmidt R R, Lunt S J, Williams K J, Stratford I J, Harris A L, Cerundolo V (2004). Utilizing the adjuvant properties of CD1ddependent NK T cells in T cell-mediated immunotherapy. J Clin Invest, 114(12): 1800–1811 PubMedCAS Google Scholar
Sriram V, Du W, Gervay-Hague J, Brutkiewicz R R (2005). Cell wall glycosphingolipids of Sphingomonas paucimobilis are CD1dspecific ligands for NKT cells. Eur J Immunol, 35(6): 1692–1701 ArticlePubMedCAS Google Scholar
Sullivan B A, Kronenberg M (2005). Activation or anergy: NKTcells are stunned by alpha-galactosylceramide. J Clin Invest, 115(9): 2328–2329 ArticlePubMedCAS Google Scholar
Teng M W, Westwood J A, Darcy P K, Sharkey J, Tsuji M, Franck RW, Porcelli S A, Besra G S, Takeda K, Yagita H, Kershaw M H, Smyth M J (2007). Combined natural killer T-cell based immunotherapy eradicates established tumors in mice. Cancer Res, 67(15): 7495–7504 ArticlePubMedCAS Google Scholar
Thapa P, Zhang G, Xia C, Gelbard A, Overwijk W W, Liu C, Hwu P, Chang D Z, Courtney A, Sastry J K, Wang P G, Li C, Zhou D (2009). Nanoparticle formulated alpha-galactosylceramide activates NKT cells without inducing anergy. Vaccine, 27(25–26): 3484–3488 ArticlePubMedCAS Google Scholar
Uldrich A P, Crowe N Y, Kyparissoudis K, Pellicci D G, Zhan Y, Lew A M, Bouillet P, Strasser A, Smyth M J, Godfrey D I (2005). NKT cell stimulation with glycolipid antigen in vivo: costimulation-dependent expansion, Bim-dependent contraction, and hyporesponsiveness to further antigenic challenge. J Immunol, 175(5): 3092–3101 PubMedCAS Google Scholar
van der Vliet H J, von Blomberg B M, Hazenberg M D, Nishi N, Otto S A, Van Benthem B H, Prins M, Claessen FA, Van den Eertwegh A J, Giaccone G, Miedema F, Scheper R J, Pinedo H M (2002). Selective decrease in circulating Valpha 24+V beta 11+ NKTcells during HIV type 1 infection. J Immunol, 168(3): 1490–1495 PubMed Google Scholar
Vanderberg J P, Nussenzweig R S, Most H, Orton C G (1968). Protective immunity produced by the injection of x-irradiated sporozoites of Plasmodium berghei. II. Effects of radiation on sporozoites. J Parasitol, 54(6): 1175–1180 CAS Google Scholar
Velmourougane G, Raju R, Bricard G, Im J S, Besra G S, Porcelli S A, Howell A R (2009). Synthesis and evaluation of an acyl-chain unsaturated analog of the Th2 biasing, immunostimulatory glycolipid, OCH. Bioorg Med Chem Lett, 19(13): 3386–3388 ArticlePubMedCAS Google Scholar
Webster R G, Sharp G B, Claas E C (1995). Interspecies transmission of influenza viruses. Am J Respir Crit Care Med, 152(4 Pt 2): S25–S30 PubMedCAS Google Scholar
Yamaguchi Y, Motoki K, Ueno H, Maeda K, Kobayashi E, Inoue H, Fukushima H, Koezuka Y (1996). Enhancing effects of (2S,3S,4R)-1-O-(alpha-D-galactopyranosyl)-2-(N-hexacosanoylamino) -1,3,4-octadecanetriol (KRN7000) on antigen-presenting function of antigen-presenting cells and antimetastatic activity of KRN7000-pretreated antigen-presenting cells. Oncol Res, 8(10–11): 399–407 PubMedCAS Google Scholar
Yang G, Schmieg J, Tsuji M, Franck R W (2004). The C-glycoside analogue of the immunostimulant alpha-galactosylceramide (KRN7000): synthesis and striking enhancement of activity. Angew Chem Int Ed Engl, 43(29): 3818–3822 ArticlePubMedCAS Google Scholar
Yoshiga Y, Goto D, Segawa S, Ohnishi Y, Matsumoto I, Ito S, Tsutsumi A, Taniguchi M, Sumida T (2008). Invariant NKT cells produce IL-17 through IL-23-dependent and -independent pathways with potential modulation of Th17 response in collagen-induced arthritis. Int J Mol Med, 22(3): 369–374 PubMedCAS Google Scholar
Yoshimoto T, Bendelac A, Watson C, Hu-Li J, Paul WE (1995). Role of NK1.1+ T cells in a TH2 response and in immunoglobulin E production. Science, 270(5243): 1845–1847 ArticlePubMedCAS Google Scholar
Youn H J, Ko S Y, Lee K A, Ko H J, Lee Y S, Fujihashi K, Boyaka P N, Kim S H, Horimoto T, Kweon M N, Kang C Y (2007). A single intranasal immunization with inactivated influenza virus and alphagalactosylceramide induces long-term protective immunity without redirecting antigen to the central nervous system. Vaccine, 25(28): 5189–5198 ArticlePubMedCAS Google Scholar
Yu E D, Girardi E, Wang J, Zajonc D M (2011). Cutting Edge: Structural basis for the recognition of β-linked glycolipid antigens by invariant NKT cells. J Immunol, 187(5): 2079–2083 ArticlePubMedCAS Google Scholar
Zhou D, Mattner J, Cantu C 3rd, Schrantz N, Yin N, Gao Y, Sagiv Y, Hudspeth K, Wu Y P, Yamashita T, Teneberg S, Wang D, Proia R L, Levery S B, Savage P B, Teyton L, Bendelac A (2004). Lysosomal glycosphingolipid recognition by NKT cells. Science, 306(5702): 1786–1789 ArticlePubMedCAS Google Scholar