A neural network method for monitoring snowstorm: A case study in southern China (original) (raw)
References
Bletsas A, 2005. Evaluation of Kalman filtering for network time keeping. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 52(9): 1452–1460. doi: 10.1109/TUFFC.2005.1516016 Article Google Scholar
Chang A T C, Foster J L, Hall D K, 1987. NIMBUS-7 SMMR derived snow cover parameters. Annals of Glaciology, 9: 39–44. Google Scholar
Derksen C, LeDrew E, Walker A et al., 2000. Influence of sensor overpass time on passive microwave-derived snow cover parameters. Remote Sensing of Environment, 71(3): 297–308. doi: 10.1016/S0034-4257(99)00084-X Article Google Scholar
Derksen C, Walker A, Goodison B et al., 2005. Integrating in situ and multiscale passive microwave data for estimation of subgrid scale snow water equivalent distribution and variability. IEEE Transactions on Geoscience and Remote Sensing, 43(5): 960–972. doi: 10.1109/TGRS.2004.839591 Article Google Scholar
Dobson M C, Ulaby F T, Hallikainen M T et al., 1985. Microwave dielectric behavior of wet soil, part 2: Dielectric mixing models. IEEE Transactions on Geoscience and Remote Sensing, GE23(1): 35–46. doi: 0196-2892/84/0001-0035 Article Google Scholar
Dong Wenjie, Wei Zhigang, Fan Lijun, 2001. Climatic character analyses of snow disasters in East Qinghai-Xizang Plateau livestock farm. Plateau Meteorology, 20(4): 402–406. (in Chinese) Google Scholar
Durand M, Liu D, 2012. The need for prior information in characterizing snow water equivalent from microwave brightness temperatures. Remote Sensing of Environment, 126(12): 248–257. doi:10.1016/j.rse.2011.10.015 Article Google Scholar
Faure T, Isaka H, Guillemet B, 2001. Neural network retrieval of cloud parameters of inhomogeneous and fractional clouds feasibility study. Remote Sensing of Environment, 77(2): 123–138. doi: 10.1016/S0034-4257(01)00199-7 Article Google Scholar
Foster J L, Chang A T C, Hall D K, 1997. Comparison of snow mass estimates from prototype passive microwave snow algorithm, a revised algorithm and a snow depth climatology. Remote Sensing of Environment, 62(2): 132–142. doi: 10.1016/S0034-4257(97)00085-0 Article Google Scholar
Foster J L, Hall D K, Chang A T C et al., 1984. An overview of passive microwave snow research and results. Reviews of Geophysics and Space Physics, 22(2): 195–208. Article Google Scholar
Foster J L, Sun C, Walker J P et al., 2005. Quantifying the uncertainty in passive microwave snow water equivalent observations. Remote Sensing of Environment, 94(2): 187–203. doi: 10.1016/j.rse.2004.09.012 Article Google Scholar
Hallikainen M T, Jolma P A, 1986. Retrieval of water equivalent of snow cover in Finland by satellite microwave radiometry. IEEE Transactions on Geoscience and Remote Sensing, GE24(6): 855–862. doi: 0196-2892/86/1100-0855 Article Google Scholar
Jiang L M, Shi J C, Tjuatja S et al., 2007. A parameterized multiple-scattering model for microwave emission from dry snow. Remote Sensing of Environment, 111(2–3): 357–366. doi: 10.1016/j.rse.2007.02.034 Article Google Scholar
Kelly R E J, Chang A T C, 2003. Development of a passive microwave global snow depth retrieval algorithm for Special Sensor Microwave Imager (SSM/I) and Advanced Microwave Scanning Radiometer-EOS (AMSR-E) data. Radio Science, 38(4): 8076. doi: 10.1029/2002RS002648 Article Google Scholar
Kelly R J, Chang A T C, Tsang L et al., 2003. A prototype AMSR-E global snow area and snow depth algorithm. IEEE Transactions on Geoscience and Remote Sensing, 41(2): 1–13. doi: 10.1109/TGRS.2003.809118 Article Google Scholar
Langlois A, Royer A, Dupont F et al., 2011. Improved corrections of forest effects on passive microwave satellite remote sensing of snow over boreal and subarctic regions. IEEE Transaction on Geoscience and Remote Sensing, 49(10): 3824–3837. doi: 10.1109/TGRS.2011.2138145 Article Google Scholar
Macelloni G, Paloscia S, Pampaloni P et al., 2001. Microwave emission from dry snow: A comparison of experimental and model results. IEEE Transactions on Geoscience and Remote Sensing, 39(12): 2649–2656. doi: 0196-2892(01)09283-X Article Google Scholar
Macelloni G, Paloscia S, Pampaloni P et al., 2005. Monitoring of melting refreezing cycles of snow with microwave radiometers: The Microwave Alpine Snow Melting Experiment (MASMEx 2002–2003). IEEE Transactions on Geoscience and Remote Sensing, 43(11): 2431–2442. doi: 10.1109/TGRS.2005.855070 Article Google Scholar
Mao K B, Li H T, Hu D Y et al., 2010. Estimation of water vapor content in near-infrared bands around 1 μm from MODIS data by using RM-NN. Optics Express, 18(9): 9542–9554. doi: 10.1364/OE.18.009542 Article Google Scholar
Mao K B, Shi J C, Li Z L et al., 2007a. A physics-based statistical algorithm for retrieving land surface temperature from AMSR-E passive microwave data. Science in China (Series D), 50(7): 1115–1120. doi: 10.1007/s11430-007-2053-x Article Google Scholar
Mao K B, Shi J C, Li Z L et al., 2007b. An RM-NN algorithm for retrieving land surface temperature and emissivity from EOS/MODIS data. Journal of Geophysical Research-Atmosphere, 112,D21102: 1–17. doi: 10.1029/2007JD008428 Google Scholar
Mao K B, Shi J C, Tang H J et al., 2008a. A neural network technique for separating and surface emissivity and temperature from ASTER imagery. IEEE Transactions on Geoscience and Remote Sensing, 46(1): 200–208. Article Google Scholar
Mao K B, Tang H J, Wang X F et al., 2008b. Near-Surface air temperature estimation from ASTER data using neural network. International Journal of Remote Sensing, 29(20): 6021–6028. doi: 10.1080/01431160802192160 Article Google Scholar
Mao K B, Tang H J, Zhang L X et al., 2008c. A Method for retrieving soil moisture in Tibet region by utilizing microwave index from TRMM/TMI Data. International Journal of Remote Sensing, 29(10): 2903–2923. doi: 10.1080/01431160701442104 Article Google Scholar
Mao Kebiao, Tang Huajun, Zhou Qingbo et al., 2009. Supervision and Analysis on Southern China’s Snow Disaster in 2008 by Using Passive Microwave Data AMSR-E. Chinese Journal of Agricultural Resources and Regional Planning, 30(1): 46–50. (in Chinese) Google Scholar
Mätzler C, 1996. Microwave permittivity of dry snow. IEEE Transactions on Geoscience and Remote Sensing, 34(2): 573–581. doi: 0196-2892(96)01004 Article Google Scholar
Njoku E G, Jackson T J, Lakshmi V et al., 2003. Soil moisture retrieval from AMSR-E. IEEE Transactions on Geoscience and Remote Sensing, 41: 215–229. doi: 10.1109/TGRS.2002.808243 Article Google Scholar
Njoku E G, Li L, 1999. Retrieval of land surface parameters using passive microwave measurements at 6-18 GHz. IEEE Transactions on Geoscience and Remote Sensing, 37(1): 79–93. doi: 0196-2892(99)00108-4 Article Google Scholar
Paloscia S, Pampaloni P, 1988. Microwave polarization index for monitoring vegetation growth. IEEE Transactions on Geoscience and Remote Sensing, 26(5): 617–621. doi: 0196-2892/88/0900-0617 Article Google Scholar
Pulliainen J T, Grandell J, Hallikainen M T, 1999. HUT snow emission model and its applicability to snow water equivalent retrieval. IEEE Transactions on Geoscience and Remote Sensing, 37(3): 1378–1390. doi: 0196-2892(99)03462-2 Article Google Scholar
Pulliainen J, 2006. Mapping of snow water equivalent and snow depth in boreal and sub-arctic zones by assimilating space-borne microwave radiometer data and ground-based observations. Remote Sensing of Environment, 101: 257–269. doi: 10.1016/j.rse.2006.01.002 Article Google Scholar
Pulliainen J, Hallikainen M, 2001. Retrieval of regional snow water equivalent from space-borne passive microwave observations. Remote Sensing of Environment, 75: 76–85. doi: S0034-4257(00)00157-7 Article Google Scholar
Qin Zhengkun, Sun Zhaobo, 2006. Influence of abnormal East Asian winter monsoon on the northwestern Pacific sea temperature. Chinese Journal of Atmospheric Sciences, 30(2): 257–267. (in Chinese) Google Scholar
Robinson D A, Dewey K F, Heim R R, 1993. Global snow cover monitoring: An update. Bulletin of the American Meteorological Society, 74: 1689–1696. Article Google Scholar
Roy V, Goita K, Royer A et al., 2004. Snow water equivalent retrieval in a Canadian boreal environment from microwave measurements using the HUT snow emission model. IEEE Transactions on Geoscience and Remote Sensing, 42(9): 1850–1859. doi: 10.1109/TGRS.2004.832245 Article Google Scholar
Shi J, Dozier J, 2000. Estimation of snow water equivalence using SIR-C/X-SAR. Part I: Inferring snow density and subsurface properties. IEEE Transactions on Geoscience and Remote Sensing, 38(6): 2465–2474. doi: 0196-2892(00)07156-4 Article Google Scholar
Tait A, 1998. Estimation of snow water equivalent using passive microwave radiation data. Remote Sensing of Environment, 64(3): 286–291. doi: 10.1016/S0034-4257(98)00005-4 Article Google Scholar
Tedesco M, Pulliainen J, Takala M et al., 2004. Artificial neural network-based techniques for the retrieval of SWE and snow depth from SSM/I data. Remote Sensing of Environment, 90(1): 76–85. doi: 10.1016/j.rse.2003.12.002 Article Google Scholar
Tsang L, Chen Z, Oh S et al., 1992. Inversion of snow parameters from passive microwave remote sensing measurements by a neural network trained with a multiple scattering model. IEEE Transactions on Geoscience and Remote Sensing, 30(5): 1015–1024. doi: 019&2892/92 Article Google Scholar
Tsang L, Kong J A, 2001. Scattering of Electromagnetic Waves: Advanced Topics. New York: Wiley-Interscience, 432. Book Google Scholar
Tzeng Y C, Chen K S, Kao W L et al., 1994. A dynamic learning nerual network for remote sensing applications. IEEE Transactions on Geoscience and Remote Sensing, 32(5): 1096–1102. Article Google Scholar
Ulaby F T, Moore R K, Fung A K, 1986. Microwave Remote Sensing: Active and Passive. Dedham: Artech House, Vol. 3. MA: Artech House, vol. 3. Dedham, Massachusetts. Google Scholar
Wiesmann A, Mätzler C, 1999. Microwave emission model of layered snowpacks. Remote Sensing of Environment, 70: 307–316. doi: 10.1016/S0034-4257(99)00046-2 Article Google Scholar
Zhang Z, Gong D, Hu M et al., 2009. Anomalous winter temperature and precipitation events in southern China. Journal of Geographical Sciences, 19: 471–488. doi: 10.1007/s11442-009-0471-8 Article Google Scholar