Central Nervous System Involvement in Diabetic Neuropathy (original) (raw)
Dyck PJ, Kratz KM, Karnes JL, Litchy WJ, Klein R, Pach JM, et al. The prevalence by staged severity of various types of diabetic neuropathy, retinopathy, and nephropathy in a population-based cohort: the Rochester diabetic neuropathy study. Neurology. 1993;43:817–24. PubMedCAS Google Scholar
Forsblom CM, Sane T, Groop PH, Totterman KJ, Kallio M, Saloranta C, et al. Risk factors for mortality in type II (non-insulin-dependent) diabetes: evidence of a role for neuropathy and a protective effect of HLA-DR4. Diabetologia. 1998;4:1253–62. Article Google Scholar
Tesfaye S, Boulton AJ, Dyck PJ, Freeman R, Horowitz R, Kempler P, et al. On behalf of the Toronto diabetic neuropathy expert group. diabetic neuropathies: update on definitions, diagnostic criteria, estimation of severity and treatments. Diabetes Care. 2010;33(10):2285–93. ArticlePubMed Google Scholar
Daousi C, MacFarlane IA, Woodward A, et al. Chronic painful peripheral neuropathy in an urban community: a controlled comparison of people with and without diabetes. Diabet Med. 2004;21:976–82. ArticlePubMedCAS Google Scholar
Davies M, Brophy S, Williams R, Taylor A. The prevalence, severity and impact of painful diabetic peripheral neuropathy in type 2 diabetes. Diabetes Care. 2006;29:1518–22. ArticlePubMed Google Scholar
Tesfaye S. Advances in the management of painful diabetic neuropathy. Curr Opin Support Palliat Care. 2009;3(2):136–43. ArticlePubMed Google Scholar
Gore M, Brandenburg N, Dukes, et al. Pain severity in diabetic peripheral neuropathy is associated with patient functioning, symptom levels of anxiety and depression, and sleep. J Pain Symptoms manage. 2005;30:374–85. Article Google Scholar
Zelman DC, Brandenburg NA, Gore M. Sleep impairment in patients with painful diabetic peripheral neuropathy. Clin J Pain. 2006;22(8):681–5. ArticlePubMed Google Scholar
Benbow SJ, Wallymahmed ME, MacFarlane IA. Diabetic peripheral neuropathy and quality of life. Q J Med. 1998;91:733–7. CAS Google Scholar
Galer BS, Gianas A, Jensen MP. Painful diabetic polyneuropathy: epidemiology, pain description, and quality of life. Diab Res Clin Pract. 2000;47(2):123–8. ArticleCAS Google Scholar
Gore M, Brandenburg N, Hoffman DL, et al. Burden of illness in painful diabetic peripheral neuropathy: the patients’ perspectives. J Pain. 2006;7(12):892–900. ArticlePubMed Google Scholar
Tolle T, Xu X, Sadosky AB. Painful diabetic neuropathy: a cross-sectional survey of health state impairment and treatment patterns. J Diabet Complications. 2006;20:26–33. Article Google Scholar
Quattrini C, Tesfaye S. Understanding the impact of painful diabetic neuropathy. Diab Metab Res Rev. 2003;19:S2–8. Article Google Scholar
Jensen T, Baconja MM, Jimenez H, Tesfaye S, Valensi P, Ziegler. Management of diabetic neuropathic pain. Diab Vas Dis Res. 2006;3:108–19. Article Google Scholar
Diabetic Neuropathy. Tesfaye S, Boulton AJ (eds), Oxford University Press, Oxford 2009
Obrosova IG. Diabetic painful and insensate neuropathy: pathogenesis and potential treatments. Neurotherapeutics. 2009;6(4):638–47. ArticlePubMedCAS Google Scholar
Said G, Slama G, Selva J. Progressive centripital degeneration of of axons in small fibre type diabetic polyneuropathy. A clinical and pathological study. Brain. 1983;106:791. ArticlePubMed Google Scholar
Malik RA, Newrick PG, Sharma AK, Jennings A, Ah-See AK, Mayhew TM, et al. Microangiopathy in human diabetic neuropathy: relationship between capillary abnormalities and the severity of neuropathy. Diabetologia. 1989;32:92–102. ArticlePubMedCAS Google Scholar
Tesfaye S, Malik R, Ward JD. Vascular factors in diabetic neuropathy. Diabetologia. 1994;37:847–54. ArticlePubMedCAS Google Scholar
Malik RA, Tesfaye S, Thompson SD, Veves A, Boulton AJM, Ward JD. Endoneurial localisation of microvascular damage in human diabetic neuropathy. Diabetologia. 1993;36:454–9. ArticlePubMedCAS Google Scholar
Malik RA, Tesfaye S, Thompson SD, Veves A, Ward JD, Boulton AJM. Transperineurial capillary abnormalities in the sural nerve of patients with diabetic neuropathy. Microvas Res. 1994;48:236–45. ArticleCAS Google Scholar
Giannini C, Dyck PJ. Ultrastructural morphometric abnormalities of sural nerve endoneurial microvessels in diabetes mellitus. Ann Neurol. 1994;36:408–15. ArticlePubMedCAS Google Scholar
Tesfaye S, Harris N, Jakubowski J, et al. Impaired blood flow and arterio-venous shunting in human diabetic neuropathy: a novel technique of nerve photography and fluorescein angiography. Diabetologia 36: 1266-1274.
Tesfaye S, Malik R, Harris N, Jakubowski J, Mody C, Rennie IG, et al. Arteriovenous shunting and proliferating new vessels in acute painful neuropathy of rapid glycaemic control (insulin neuritis). Diabetologia. 1996;39:329–35. ArticlePubMedCAS Google Scholar
Ibrahim S, Harris ND, Radatz M, Selmi F, Rajbhandari S, Brady L, et al. A new minimally invasive technique to show nerve ischaemia in diabetic neuropathy. Diabetologia. 1999;42(6):737–42. ArticlePubMedCAS Google Scholar
Newrick PG, Wilson AJ, Jakubowski J, Boulton AJM, Ward JD. Sural nerve oxygen tension in diabetes. Br Med J. 1986;193:1053–4. Article Google Scholar
Thomas PK. Mechanisms of neuropathic pain. In: Gries FA, Cameron NE, Low PA, Ziegler D, editors. Textbook of diabetic neuropathy. Stuttgart: Thieme; 2003. p. 208–11. Google Scholar
Young RJ. Structural functional interactions in the natural\history of diabetic polyneuropathy: a key to the understanding of neuropathic pain? Diabet Med. 1993;10 Suppl 2:87S–8S. Google Scholar
Asbury AK, Fields HL. Pain due to peripheral nerve damage: an hypothesis. Neurology. 1984;34:1587–90. PubMedCAS Google Scholar
Wall PD, Gutnick M. Ongoing activity in peripheral nerves: the physiology and pharmacology of impulses originating in a neuroma. Exp Neurol. 1974;43:580–93. ArticlePubMedCAS Google Scholar
Llewelyn JG, Gilbey SG, Thomas PK, et al. Sural nerve morphometry in diabetic autonomic and painful sensory neuropathy: a clinico pathological study. Brain. 1991;114:867–92. ArticlePubMed Google Scholar
Britland ST, Young RJ, Sharma AK, et al. Acute remitting painful diabetic polyneuropathy: a comparison of peripheral nerve fibre pathology. Pain. 1992;48:361–70. ArticlePubMedCAS Google Scholar
Oyibo S, Prasad YD, Jackson NJ, et al. The relationship between blood glucose excursions and painful diabetic peripheral neuropathy: a pilot study. Diabet Med. 2002;19:870–3. ArticlePubMedCAS Google Scholar
Eaton SE, Harris ND, Ibrahim S, Patel K, Selmi F, Radatz M, Ward JD, Tesfaye S. Differnces insural nerve haemodynamics in painful and painless neuropathy. Diabetologia 2003; 934–939.
Quattrini C, Harris ND, Malik RA, Tesfaye S. Impaired skin microvascular reactivity in painful diabetic neuropathy. Diabetes Care. 2007;30:655–9. ArticlePubMed Google Scholar
Sorensen L, Molyneaux L, Yue DK. The relationship among pain, sensory loss, and small nerve fibers in diabetes. Diabetes Care. 2006;29:883–7. ArticlePubMed Google Scholar
Gandhi R, Marques JLB, Selvarajah D, et al. Painful diabetic neuropathy is associated with greater autonomic dysfunction than painless diabetic neuropathy. Diabetes Care. 2010;33:1585–90. ArticlePubMed Google Scholar
Manschot SM, Brands AM, van der Grond J, Kessels RP, Algra A, Kappelle LJ. Utrecht diabetic encephalopathy study group. brain magnetic resonance imaging correlates of impaired cognition in patients with type 2 diabetes. Diabetes. 2006;55(4):1106–13. ArticlePubMedCAS Google Scholar
Mijnhout GS, Scheltens P, Diamant M, Biessels GJ, Wessels AM, Simsek S, et al. Diabetic encephalopathy: a concept in need of a definition. Diabetologia. 2006;49:1447–8. ArticlePubMedCAS Google Scholar
Leichtentritt H. Erkrankung Peripherer nerven und des rucken-marks bei diabetes mellitus. Berlin: G. Schade; 1893. p. 32. Google Scholar
Pryce, T. D. (1893). On diabetic neuritis with a clinical and pathological description of three cases of diabetic pseudo-tabes. Brain, 1.
Williamson, R. T. (1904). Changes in the spinal cord in diabetes mellitus. Br Med J, 1.
Reske-Nielsen E, Lundbaek K. Pathological changes in the central and peripheral nervous system of young long-term diabetics. II. The spinal cord and peripheral nerves. Diabetologia. 1968;4:34–43. ArticlePubMedCAS Google Scholar
Reske-Nielsen E, Lundbaek K, et al. Pathological changes in the central and peripheral nervous system of young long-term diabetics. The terminal neuro-muscular apparatus. Diabetologia. 1970;6:98–103. ArticlePubMedCAS Google Scholar
Tesfaye S, Watt J, et al. Electrical spinal-cord stimulation for painful diabetic peripheral neuropathy. Lancet. 1996;348:1698–701. ArticlePubMedCAS Google Scholar
Eaton SE, Harris ND, et al. Spinal-cord involvement in diabetic peripheral neuropathy. Lancet. 2001;358:35–6. ArticlePubMedCAS Google Scholar
Selvarajah D, Wilkinson ID, Emery CJ, Harris ND, Shaw PJ, Witte DR, et al. Early involvement of the spinal cord in diabetic peripheral neuropathy. Diabetes Care. 2006;29:2664–9. ArticlePubMed Google Scholar
Pfeifer MA, Schumer MP. Clinical trials of diabetic neuropathy: past, present, and future. Diabetes. 1995;44:1355–61. ArticlePubMedCAS Google Scholar
Dyck PJ, Overland CJ, Low PA, Litchy WJ, Davies JL, Dyck PJ, O’Brien PC; Cl vs. NPhys Trial Investigators, Albers JW, Andersen H, Bolton CF, England JD, Klein CJ, Llewelyn JG, Mauermann ML, Russell JW, Singer W, Smith AG, Tesfaye S, Vella A. Signs and symptoms versus nerve conduction studies to diagnose diabetic sensorimotor polyneuropathy: Cl vs. NPhys trial. Muscle Nerve. 2010 Aug;42(2):157–164
Dyck PJ, Norell JE, Tritschler H, Schuette K, Samigullin R, Ziegler D, et al. Challenges in design of multicenter trials: end points assessed longitudinally for change and monotonicity. Diabetes Care. 2007;30:2619–25. ArticlePubMed Google Scholar
Wilkinson ID, Gandhi RA, Hunter MD, Emery CJ, Griffiths P, Selvarajah D, et al. Functional MRI and response to pain in diabetic neuropathy. Diabet Med. 2007;24 suppl 1:187. Google Scholar
Wilson P, Kitchener PD, et al. Cutaneous receptive field organization in the ventral posterior nucleus of the thalamus in the common marmoset. J Neurophysiol. 1999;82:1865–75. PubMedCAS Google Scholar
McCormick DA, Bal T. Sensory gating mechanisms of the thalamus. Curr Opin Neurobiol. 1994;4:550–6. ArticlePubMedCAS Google Scholar
Wilkinson ID, Griffiths PD, et al. Proton magnetic resonance spectroscopy of brain lesions in children with neurofibromatosis type 1. Magn Reson Imaging. 2001;19:1081–9. ArticlePubMedCAS Google Scholar
Wilkinson ID, Hadjivassiliou M, et al. Cerebellar abnormalities on proton MR spectroscopy in gluten ataxia. J Neurol Neurosurg Psychiatry. 2005;76:1011–3. ArticlePubMedCAS Google Scholar
Moffett JR, Namboodiri MA, et al. Immunohistochemical localization of N-acetylaspartate in rat brain. Neuroreport. 1991;2:131–4. ArticlePubMedCAS Google Scholar
Simmons ML, Frondoza CG, et al. Immunocytochemical localization of N-acetyl-aspartate with monoclonal antibodies. Neuroscience. 1991;45:37–45. ArticlePubMedCAS Google Scholar
Urenjak J, Williams SR, et al. Proton nuclear magnetic resonance spectroscopy unambiguously identifies different neural cell types. J Neurosci. 1993;13:981–9. PubMedCAS Google Scholar
Wilkinson ID, Lunn S, et al. Proton MRS and quantitative MRI assessment of the short term neurological response to antiretroviral therapy in AIDS. J Neurol Neurosurg Psychiatry. 1997;63:477–82. ArticlePubMedCAS Google Scholar
Matthews PM, Andermann F, et al. A proton magnetic resonance spectroscopy study of focal epilepsy in humans. Neurology. 1990;40:985–9. PubMedCAS Google Scholar
De Stefano N, Matthews PM, et al. Reversible decreases in N-acetylaspartate after acute brain injury. Magn Reson Med. 1995;34:721–7. ArticlePubMed Google Scholar
Tsai G, Coyle JT. N-acetylaspartate in neuropsychiatric disorders. Prog Neurobiol. 1995;46:531–40. ArticlePubMedCAS Google Scholar
Hugg JW, Kuzniecky RI, et al. Normalization of contralateral metabolic function following temporal lobectomy demonstrated by 1H magnetic resonance spectroscopic imaging. Ann Neurol. 1996;40:236–9. ArticlePubMedCAS Google Scholar
Nakano M, Ueda H, et al. Measurement of regional N-acetylaspartate after transient global ischemia in gerbils with and without ischemic tolerance: an index of neuronal survival. Ann Neurol. 1998;44:334–40. ArticlePubMedCAS Google Scholar
Sarac K, Akinci A, et al. Brain metabolite changes on proton magnetic resonance spectroscopy in children with poorly controlled type 1 diabetes mellitus. Neuroradiology. 2005;47:562–5. ArticlePubMedCAS Google Scholar
Rankins D, Wellard RM, et al. The impact of acute hypoglycemia on neuropsychological and neurometabolite profiles in children with type 1 diabetes. Diabetes Care. 2005;28:2771–3. ArticlePubMed Google Scholar
Wootton-Gorges SL, Buonocore MH, et al. Detection of cerebral {beta}-hydroxy butyrate, acetoacetate, and lactate on proton MR spectroscopy in children with diabetic ketoacidosis. AJNR Am J Neuroradiol. 2005;26:1286–91. PubMed Google Scholar
Kreis R, Ross BD. Cerebral metabolic disturbances in patients with subacute and chronic diabetes mellitus: detection with proton MR spectroscopy. Radiology. 1992;184:123–30. PubMedCAS Google Scholar
Geissler A, Frund R, et al. Alterations of cerebral metabolism in patients with diabetes mellitus studied by proton magnetic resonance spectroscopy. Exp Clin Endocrinol Diab. 2003;111:421–7. ArticleCAS Google Scholar
Selvarajah D, Wilkinson ID, Emery CJ, Shaw PJ, Griffiths PD, Gandhi R, et al. Thalamic neuronal dysfunction and chronic sensorimotor distal symmetrical polyneuropathy in patients with type 1 diabetes mellitus. Diabetologia. 2008;51:2088–92. ArticlePubMedCAS Google Scholar
Gandhi R, Selvarajah D, Emery CJ, Wilkinson ID, Tesfaye S. Neurochemical abnormalities within sensory pathways in the brain in diabetic neuropathy. Diabetologia. 2008;51(Supp 1):1–588. Google Scholar
Sorensen L, Siddall PJ, Trenell MI, Yue DK. Differences in metabolites in pain-processing brain regions in patients with diabetes and painful neuropathy. Diabetes Care. 2008;31:980–1. ArticlePubMed Google Scholar
Østergaard L. Cerebral perfusion imaging by bolus tracking. Top Magn Reson Imaging. 2004;15:3–9. ArticlePubMed Google Scholar
Selvarajah D, Wilkinson ID, Gandhi R, Griffiths PD, Tesfaye S. Microvascular perfusion abnormalities of the thalamus in painful but Not painless diabetic polyneuropathy: a clue to the pathogenesis of pain in type 1 diabetes. Diabetes Care. 2011;34(3):718–20. ArticlePubMed Google Scholar
Lai MH, Wang TY, Chang CC, Li TY, Chang ST. Cerebellar diaschisis and contralateral thalamus hyperperfusion in a stroke patient with complex regional pain syndrome. J Clin Neurosci. 2008;15(10):1166–8. ArticlePubMed Google Scholar
Fischer TZ, Tan AM, Waxman SG. Thalamic neuron hyperexcitability and enlarged receptive fields in the STZ model of diabetic pain. Brain Res. 2009;1268:154–61. ArticlePubMedCAS Google Scholar
Fischer TZ, Waxman SG. Neuropathic pain in diabetes–evidence for a central mechanism. Nat Rev Neurol. 2010;6(8):462–6. ArticlePubMed Google Scholar
Laterre EC, De Volder AG, Goffinet AM. Brain glucose metabolism in thalamic syndrome. J Neurol Neurosurg Psychiatry. 1988;51:427–8. ArticlePubMedCAS Google Scholar
Di Piero V, Jones AK, Iannotti F, Powell M, Perani D, Lenzi GL, et al. Chronic pain: a PET study of the central effects of percutaneous high cervical cordotomy. Pain. 1991;46:9–12. ArticlePubMed Google Scholar
Hua SE, Garonzik IM, Lee JI, Lenz FA. Microelectrode studies of normal organization and plasticity of human somatosensory thalamus. J Clin Neurophysiol. 2000;17:559–74. ArticlePubMedCAS Google Scholar
Moisset X, Bouhassira D. Brain imaging of neuropathic pain. Neuroimage 2077, Suppl 1, S80-S88.
Iadarola MJ, Max MB, Berman KF, Byas-Smith MG, Coghill RC, Gracely RH, et al. Unilateral decrease in thalamic activity observed with positron emission tomography in patients with chronic neuropathic pain. Pain. 1995;63:55–64. ArticlePubMedCAS Google Scholar
Hsieh JC, Belfrage M, Stone-Elander S, Hansson P, Ingvar M. Central representation of chronic ongoing neuropathic pain studied by positron emission tomography. Pain. 1995;63:225–36. ArticlePubMedCAS Google Scholar
Woolf C, Mannion R. Neuropathic pain: aetiology, symptoms, mechanisms and management. Lancet. 1999;353:1959–64. ArticlePubMedCAS Google Scholar
Costigan, M., J. Scholtz, et al. (2009). "Neuropathic pain: A maladaptive response of the nervous system to damage." Annual Review of Neuroscience 32(1-32).
Belfer I, Daif F. Phenotyping and genotyping neuropathic pain. Curr Pain Headache Rep. 2010;14:203–12. ArticlePubMed Google Scholar
Lassen N, Kanno I. Two methods for calculating regional cerebral blood flow from emission computed tomography of inert gas concentrations. J Comput Assist Tomogr. 1979;3:31–76. Google Scholar
TalbotJD MS, Evans AC, et al. Multiple representations of pain in human cerebral cortex. Science. 1991;251:1355–8. Article Google Scholar
Apkarian A, Bushnell B, et al. Human brain mechanisms of pain perception and regulation in health and disease. Eur J Pain. 2005;9:463–84. ArticlePubMed Google Scholar
Bushnell MC, Duncan GH, Hofbauer RK, Ha B, Chen JI, Carrier B. Pain perception: is there a role for primary somatosensory cortex? Proc Natl Acad Sci USA. 1999;96(14):7705–9. ArticlePubMedCAS Google Scholar
Kanda M, Nagamine T, Ikeda A, Ohara S, Kunieda T, Fujiwara N, et al. Primary somatosensory cortex is actively involved in pain processing in human. Brain Res. 2000;853(2):282–9. ArticlePubMedCAS Google Scholar
Peyron R, García-Larrea L, Grégoire MC, Convers P, Richard A, Lavenne F, et al. Parietal and cingulate processes in central pain. A combined positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) study of an unusual case. Pain. 2000;84(1):77–87. ArticlePubMedCAS Google Scholar
Tracey I, Mantyh P. The Cerebral Signature for pain perception and its modulation. Neuron. 2007;55(3):377–91. ArticlePubMedCAS Google Scholar
Wilkinson ID, Gandhi R, Hunter MD, Selvarajah D, Emery CJ, Griffiths PD, et al. A functional magnetic resonance imaging study demonstrating alterations in brain responses to acute pain stimulation in diabetic neuropathy. Diabetologia. 2007;50(Supp 1):1–538. Google Scholar
Brooks J, Tracey I. From nociception to pain perception: imaging the spinal and supraspinal pathways. J Anat. 2005;207:19–33. ArticlePubMed Google Scholar
Valeriani M, Arendt-Nielsen L, Le Pera D, Restuccia D, Rosso T, De Armas L, et al. Short-term plastic changes of the human nociceptive system following acute pain induced by capsaicin. Clin Neurophysiol. 2003;114:1879–90. ArticlePubMed Google Scholar
Petrovic P, Ingvar M, Stone-Elander S, Petersson KM, Hansson P. A PET activation study of dynamic mechanical allodynia in patients with mononeuropathy. Pain. 1999;83:459–70. ArticlePubMedCAS Google Scholar
Peyron R, García-Larrea L, Grégoire MC, Convers P, Lavenne F, Veyre L, et al. Allodynia after lateral-medullary (Wallenberg) infarct. PET study Brain. 1998;121:345–56. Google Scholar
Zambreanu L et al. A role for the brainstem in central sensitisation in humans. Pain. 2005;114:397–407. ArticlePubMedCAS Google Scholar
Witting N, Kupers RC, Svensson P, Arendt-Nielsen L, Gjedde A, Jensen TS. Experimental brush-evoked allodynia activates posterior parietal cortex. Neurology. 2001;57:1817–24. PubMedCAS Google Scholar
Becerra L, Morris S, Bazes S, Gostic R, Sherman S, Gostic J, et al. Trigeminal neuropathic pain alters responses in CNS circuits to mechanical (brush) and thermal (cold and heat) stimuli. J Neurosci. 2006;26:10646–57. ArticlePubMedCAS Google Scholar
Schweinhardt P, Glynn C, Brooks J, McQuay H, Jack T, Chessell I, et al. An fMRI study of cerebral processing of brush-evoked allodynia in neuropathic pain patients. Neuroimage. 2006;32:256–65. ArticlePubMed Google Scholar
Tracey I, Mantyh PW. The cerebral signature for pain perception and its modulation. Neuron 55, 377–91.