Yoon KH, Lee JH, Kim JW, Cho JH, Choi YH, et al. Epidemic obesity and type 2 diabetes in Asia. Lancet. 2006;368:1681–8. ArticlePubMed Google Scholar
Chan JC, Malik V, Jia W, Kadowaki T, Yajnik CS, et al. Diabetes in Asia: epidemiology, risk factors, and pathophysiology. JAMA. 2009;301:2129–40. ArticleCASPubMed Google Scholar
Abate N, Chandalia M. The impact of ethnicity on type 2 diabetes. J Diabet Complicat. 2003;17:39–58. Article Google Scholar
Ntuk UE, Gill JM, Mackay DF, Sattar N, Pell JP. Ethnic-specific obesity cutoffs for diabetes risk: cross-sectional study of 490,288 UK Biobank participants. Diabetes Care. 2014;37:2500–7. An original article clarifying that East Asians develop type 2 diabetes at lower body mass index compared to Caucasians through a large multi-ethnic cohort in the UK. ArticlePubMed Google Scholar
Nakanishi S, Okubo M, Yoneda M, Jitsuiki K, Yamane K, et al. A comparison between Japanese-Americans living in Hawaii and Los Angeles and native Japanese: the impact of lifestyle westernization on diabetes mellitus. Biomed Pharmacother. 2004;58:571–7. ArticleCASPubMed Google Scholar
Fujimoto WY, Boyko EJ, Hayashi T, Kahn SE, Leonetti DL, et al. Risk factors for type 2 diabetes: lessons learned from Japanese Americans in Seattle. J Diabetes Investig. 2012;3:212–24. An important review describing characteristics of Japanese American’s diabetes which is highly relevant to discuss pathogenesis of type 2 diabetes among East Asians. ArticlePubMed CentralPubMed Google Scholar
Moller JB, Dalla Man C, Overgaard RV, Ingwersen SH, Tornoe CW, et al. Ethnic differences in insulin sensitivity, beta-cell function, and hepatic extraction between Japanese and Caucasians: a minimal model analysis. J Clin Endocrinol Metab. 2014;99:4273–80. An original article describing direct comparisons of insulin secretion and resistance, during intravenous glucose tolerance test, between Japanese and Caucasians. ArticlePubMed Google Scholar
Moller JB, Pedersen M, Tanaka H, Ohsugi M, Overgaard RV, et al. Body composition is the main determinant for the difference in type 2 diabetes pathophysiology between Japanese and Caucasians. Diabetes Care. 2014;37:796–804. An original article describing direct comparisons of insulin secretion and resistance, during oral glucose tolerance test, between Japanese and Caucasians. ArticlePubMed Google Scholar
Fukushima M, Suzuki H, Seino Y. Insulin secretion capacity in the development from normal glucose tolerance to type 2 diabetes. Diabetes Res Clin Pract. 2004;66S:S37–44. Article Google Scholar
Kagan A, Harris BR, Winkelstein Jr W, Johnson KG, Kato H, et al. Epidemiologic studies of coronary heart disease and stroke in Japanese men living in Japan, Hawaii and California: demographic, physical, dietary and biochemical characteristics. J Chron Dis. 1974;27:345–64. ArticleCASPubMed Google Scholar
West KM. Diabetes in American Indians and other native populations of the New World. Diabetes. 1974;23:841–55. ArticleCASPubMed Google Scholar
Olefsky JM. LIlly lecture 1980. Insulin resistance and insulin action. An in vitro and in vivo perspective. Diabetes. 1981;30:148–62. ArticleCASPubMed Google Scholar
McNeely MJ, Boyko EJ. Type 2 diabetes prevalence in Asian Americans: results of a national health survey. Diabetes Care. 2004;27:66–9. ArticlePubMed Google Scholar
Fujimoto WY, Hershon K, Kinyoun J, Stolov W, Weinberg C, et al. Type II diabetes mellitus in Seattle and Tokyo. Tohoku J Exp Med. 1983;141(Suppl):133–9. ArticlePubMed Google Scholar
Lyssenko V, Almgren P, Anevski D, Perfekt R, Lahti K, et al. Predictors of and longitudinal changes in insulin sensitivity and secretion preceding onset of type 2 diabetes. Diabetes. 2005;54:166–74. ArticleCASPubMed Google Scholar
Ogihara T, Mirmira RG. An islet in distress: beta cell failure in type 2 diabetes. J Diabetes Investig. 2010;1:123–33. PubMed CentralCASPubMed Google Scholar
DeFronzo RA. Pathogenesis of type 2 diabetes mellitus. Med Clin North Am. 2004;88:787–835. ix. ArticleCASPubMed Google Scholar
Fukushima M, Usami M, Ikeda M, Nakai Y, Taniguchi A, et al. Insulin secretion and insulin sensitivity at different stages of glucose tolerance: a cross-sectional study of Japanese type 2 diabetes. Metabolism. 2004;53:831–5. ArticleCASPubMed Google Scholar
Kadowaki T, Miyake Y, Hagura R, Akanuma Y, Kajinuma H, et al. Risk factors for worsening to diabetes in subjects with impaired glucose tolerance. Diabetologia. 1984;26:44–9. ArticleCASPubMed Google Scholar
Iwahashi H, Okauchi Y, Ryo M, Noguchi M, Morita S, et al. Insulin-secretion capacity in normal glucose tolerance, impaired glucose tolerance, and diabetes in obese and non-obese Japanese patients. J Diabetes Investig. 2012;3:271–5. ArticlePubMed CentralCASPubMed Google Scholar
Yabe D, Kuroe A, Watanabe K, Iwasaki M, Hamasaki A, et al. Early phase glucagon and insulin secretory abnormalities, but not incretin secretion, are similarly responsible for hyperglycemia after ingestion of nutrients. J Diabet Complicat. 2015;29(3):413–21.
Seino Y, Taminato T, Goto Y, Ikeda M, Imura H. Comparative insulinogenic effect of glucose, arginine and glucagon in patients with diabetes mellitus, endocrine disorders and liver disease. Acta Diabetol. 1975;12(2):89–99. ArticleCAS Google Scholar
Kosaka K, Kuzuya T, Akanuma Y, Hagura R. Increase in insulin response after treatment of overt maturity-onset diabetes is independent of the mode of treatment. Diabetologia. 1980;18:23–8. ArticleCASPubMed Google Scholar
Seino Y, Goto Y, Kurahachi H, Sakurai H, Ikeda M. Alteration of plasma glucagon response to arginine after treatment in patients with diabetes mellitus, Cushing’s syndrome and hypothyroidism. Horm Metab Res. 1977;9:28–32. ArticleCASPubMed Google Scholar
Seino Y, Ikeda M, Kurahachi H, Taminato T, Sakurai H, et al. Failure of suppress plasma glucagon concentrations by orally administered glucose in diabetic patients after treatment. Diabetes. 1978;27:1145–50. ArticleCASPubMed Google Scholar
Tripathy D, Carlsson M, Almgren P, Isomaa B, Taskinen MR, et al. Insulin secretion and insulin sensitivity in relation to glucose tolerance: lessons from the Botnia Study. Diabetes. 2000;49:975–80. ArticleCASPubMed Google Scholar
Kim DJ, Lee MS, Kim KW, Lee MK. Insulin secretory dysfunction and insulin resistance in the pathogenesis of Korean type 2 diabetes mellitus. Metabolism. 2001;50:590–3. ArticleCASPubMed Google Scholar
Choi YH, Ahn YB, Yoon KH, Kang MI, Cha BY, et al. New ADA criteria in the Korean population: fasting blood glucose is not enough for diagnosis of mild diabetes especially in the elderly. Korean J Intern Med. 2000;15:211–7. ArticleCASPubMed Google Scholar
Qian L, Xu L, Wang X, Fu X, Gu Y, et al. Early insulin secretion failure leads to diabetes in Chinese subjects with impaired glucose regulation. Diabetes Metab Res Rev. 2009;25:144–9. ArticleCASPubMed Google Scholar
Pang C, Bao YQ, Wang C, Lu JX, Jia WP, et al. Relationship between the level of fasting plasma glucose and beta cell functions in Chinese with or without diabetes. Chin Med J (Engl). 2008;121:2119–23. CAS Google Scholar
Taniguchi A, Nakai Y, Fukushima M, Kawamura H, Imura H, et al. Pathogenic factors responsible for glucose intolerance in patients with NIDDM. Diabetes. 1992;41:1540–6. ArticleCASPubMed Google Scholar
Welch S, Gebhart SS, Bergman RN, Phillips LS. Minimal model analysis of intravenous glucose tolerance test-derived insulin sensitivity in diabetic subjects. J Clin Endocrinol Metab. 1990;71:1508–18. ArticleCASPubMed Google Scholar
Kodama K, Tojjar D, Yamada S, Toda K, Patel CJ, et al. Ethnic differences in the relationship between insulin sensitivity and insulin response: a systematic review and meta-analysis. Diabetes Care. 2013;36:1789–96. ArticlePubMed CentralCASPubMed Google Scholar
Tanaka S, Horimai C, Katsukawa F. Ethnic differences in abdominal visceral fat accumulation between Japanese, African-Americans, and Caucasians: a meta-analysis. Acta Diabetol. 2003;40 Suppl 1:S302–4. ArticlePubMed Google Scholar
DECODE Study Group on behalf of the European Diabetes Epidemiology Study Group. Will new diagnostic criteria for diabetes mellitus change phenotype of patients with diabetes? Reanalysis of European epidemiological data. BMJ 1998;317:371–75.
Qiao Q, Nakagami T, Tuomilehto J, Borch-Johnsen K, Balkau B, et al. Comparison of the fasting and the 2-h glucose criteria for diabetes in different Asian cohorts. Diabetologia. 2000;43:1470–5. ArticleCASPubMed Google Scholar
Suzuki H, Fukushima M, Usami M, Ikeda M, Taniguchi A, et al. Factors responsible for development from normal glucose tolerance to isolated postchallenge hyperglycemia. Diabetes Care. 2003;26:1211–5. ArticleCASPubMed Google Scholar
Mitsui R, Fukushima M, Taniguchi A, Nakai Y, Aoyama S, et al. Insulin secretory capacity and insulin sensitivity in impaired fasting glucose in Japanese. J Diabetes Investig. 2012;3:377–83. ArticlePubMed CentralCASPubMed Google Scholar
Nishi Y, Fukushima M, Suzuki H, Mitsui R, Ueda N, et al. Insulin secretion and insulin sensitivity in Japanese subjects with impaired fasting glucose and isolated fasting hyperglycemia. Diabetes Res Clin Pract. 2005;70:46–52. ArticleCASPubMed Google Scholar
Nakagami T, Qiao Q, Carstensen B, Nhr-Hansen C, Hu G, et al. Age, body mass index and type 2 diabetes-associations modified by ethnicity. Diabetologia. 2003;46:1063–70. ArticleCASPubMed Google Scholar
Fujimoto WY, Leonetti DL, Kinyoun JL, Shuman WP, Stolov WC, et al. Prevalence of complications among second-generation Japanese-American men with diabetes, impaired glucose tolerance, or normal glucose tolerance. Diabetes. 1987;36:730–9. ArticleCASPubMed Google Scholar
Fujimoto WY, Leonetti DL, Kinyoun JL, Newell-Morris L, Shuman WP, et al. Prevalence of diabetes mellitus and impaired glucose tolerance among second-generation Japanese-American men. Diabetes. 1987;36:721–9. ArticleCASPubMed Google Scholar
Matsubara T, Mita A, Minami K, Hosooka T, Kitazawa S, et al. PGRN is a key adipokine mediating high fat diet-induced insulin resistance and obesity through IL-6 in adipose tissue. Cell Metab. 2012;15:38–50. ArticleCASPubMed Google Scholar
Yasuda K, Miyake K, Horikawa Y, Hara K, Osawa H, et al. Variants in KCNQ1 are associated with susceptibility to type 2 diabetes mellitus. Nat Genet. 2008;40:1092–7. ArticleCASPubMed Google Scholar
Unoki H, Takahashi A, Kawaguchi T, Hara K, Horikoshi M, et al. SNPs in KCNQ1 are associated with susceptibility to type 2 diabetes in East Asian and European populations. Nat Genet. 2008;40:1098–102. ArticleCASPubMed Google Scholar
Ullrich S, Su J, Ranta F, Wittekindt OH, Ris F, et al. Effects of I(Ks) channel inhibitors in insulin-secreting INS-1 cells. Pflugers Arch. 2005;451:428–36. ArticleCASPubMed Google Scholar
Yamauchi T, Hara K, Maeda S, Yasuda K, Takahashi A, et al. A genome-wide association study in the Japanese population identifies susceptibility loci for type 2 diabetes at UBE2E2 and C2CD4A-C2CD4B. Nat Genet. 2010;42:864–8. ArticleCASPubMed Google Scholar
Kimura M, Hattori T, Matsuda Y, Yoshioka T, Sumi N, et al. cDNA cloning, characterization, and chromosome mapping of UBE2E2 encoding a human ubiquitin-conjugating E2 enzyme. Cytogenet Cell Genet. 1997;78:107–11. ArticleCASPubMed Google Scholar
Tsai FJ, Yang CF, Chen CC, Chuang LM, Lu CH, et al. A genome-wide association study identifies susceptibility variants for type 2 diabetes in Han Chinese. PLoS Genet. 2010;6:e1000847. ArticlePubMed CentralPubMed Google Scholar
Shu XO, Long J, Cai Q, Qi L, Xiang YB, et al. Identification of new genetic risk variants for type 2 diabetes. PLoS Genet. 2010;6:e1001127. ArticlePubMed CentralPubMed Google Scholar
Wolosker H, Blackshaw S, Snyder SH. Serine racemase: a glial enzyme synthesizing D-serine to regulate glutamate-N-methyl-D-aspartate neurotransmission. Proc Natl Acad Sci U S A. 1999;96:13409–14. ArticlePubMed CentralCASPubMed Google Scholar
Gonoi T, Mizuno N, Inagaki N, Kuromi H, Seino Y, et al. Functional neuronal ionotropic glutamate receptors are expressed in the non-neuronal cell line MIN6. J Biol Chem. 1994;269:16989–92. CASPubMed Google Scholar
Cho YS, Chen CH, Hu C, Long J, Ong RT, et al. Meta-analysis of genome-wide association studies identifies eight new loci for type 2 diabetes in East Asians. Nat Genet. 2012;44:67–72. ArticleCAS Google Scholar
Hwang JY, Sim X, Wu Y, Liang J, Tabara Y, et al. Genome-wide association meta-analysis identifies novel variants associated with fasting plasma glucose in East Asians. Diabetes. 2015;64(1):291–8.
Neel JV. Diabetes mellitus: a "thrifty" genotype rendered detrimental by "progress"? Am J Hum Genet. 1962;14:353–62. PubMed CentralCASPubMed Google Scholar
Southam L, Soranzo N, Montgomery SB, Frayling TM, McCarthy MI, et al. Is the thrifty genotype hypothesis supported by evidence based on confirmed type 2 diabetes- and obesity-susceptibility variants? Diabetologia. 2009;52:1846–51. ArticlePubMed CentralCASPubMed Google Scholar
Cho YS, Lee JY, Park KS, Nho CW. Genetics of type 2 diabetes in East Asian populations. Curr Diabetes Rep. 2012;12:686–96. Article Google Scholar
Nauck MA, Homberger E, Siegel EG, Allen RC, Eaton RP, et al. Incretin effects of increasing glucose loads in man calculated from venous insulin and C-peptide responses. J Clin Endocrinol Metab. 1986;63:492–8. ArticleCASPubMed Google Scholar
Knop FK, Vilsboll T, Hojberg PV, Larsen S, Madsbad S, et al. Reduced incretin effect in type 2 diabetes: cause or consequence of the diabetic state? Diabetes. 2007;56:1951–9. ArticleCASPubMed Google Scholar
Bagger JI, Knop FK, Lund A, Vestergaard H, Holst JJ, et al. Impaired regulation of the incretin effect in patients with type 2 diabetes. J Clin Endocrinol Metab. 2011;96:737–45. ArticleCASPubMed Google Scholar
Seino Y, Fukushima M, Yabe D. GIP and GLP-1, the two incretin hormones: similarities and differences. J Diabetes Investig. 2010;1:9–23. Google Scholar
Yabe D, Seino Y. Two incretin hormones GLP-1 and GIP: comparison of their actions in insulin secretion and beta cell preservation. Prog Biophys Mol Biol. 2011;107:248–56. ArticleCASPubMed Google Scholar
Drucker DJ. Incretin action in the pancreas: potential promise, possible perils, and pathological pitfalls. Diabetes. 2013;62:3316–23. A useful review of intra- and extrapancreatic actions of glucose-dependent insulinotropic polypeptide and glucagon-like peptide 1, which is highly relevant to discuss efficacy and safety of incretin-based therapies in the management of type 2 diabetes. ArticlePubMed CentralCASPubMed Google Scholar
Calanna S, Christensen M, Holst JJ, Laferrere B, Gluud LL, et al. Secretion of glucagon-like peptide-1 in patients with type 2 diabetes mellitus: systematic review and meta-analyses of clinical studies. Diabetologia. 2013;56:965–72. An important systematic review and meta-analysis comparing secretion of glucagon-like peptide-1 between subjects with type 2 diabetes and normal glucose-tolerance. ArticlePubMed CentralCASPubMed Google Scholar
Calanna S, Christensen M, Holst JJ, Laferrere B, Gluud LL, et al. Secretion of glucose-dependent insulinotropic polypeptide in patients with type 2 diabetes: systematic review and meta-analysis of clinical studies. Diabetes Care. 2013;36:3346–52. An important systematic review and meta-analysis comparing secretion of glucose-dependent insulinotropic polypeptide between subjects with type 2 diabetes and normal glucose-tolerance. ArticlePubMed CentralCASPubMed Google Scholar
Nauck MA, Vardarli I, Deacon CF, Holst JJ, Meier JJ. Secretion of glucagon-like peptide-1 (GLP-1) in type 2 diabetes: what is up, what is down? Diabetologia. 2011;54(1):10–8.
Yabe D, Kuroe A, Lee S, Watanabe K, Hyo T, et al. Little enhancement of meal-induced GLP-1 secretion in Japanese: comparison of type 2 diabetes and healthy controls. J Diabetes Investig. 2010;1:56–9. ArticlePubMed CentralCASPubMed Google Scholar
Kozawa J, Okita K, Imagawa A, Iwahashi H, Holst JJ, et al. Similar incretin secretion in obese and non-obese Japanese subjects with type 2 diabetes. Biochem Biophys Res Commun. 2010;393:410–3. ArticleCASPubMed Google Scholar
Lee S, Yabe D, Nohtomi K, Takada M, Morita R, et al. Intact glucagon-like peptide-1 levels are not decreased in Japanese patients with type 2 diabetes. Endocr J. 2010;57:119–26. ArticleCASPubMed Google Scholar
Oh TJ, Park KS, Cho YM. Correlation of the incretin effect with first- and second-phase insulin secretions in Koreans with various glucose tolerance statuses. Clin Endocrinol (Oxf). 2014. doi:10.1111/cen.12623.
Oh TJ, Kim MY, Shin JY, Lee JC, Kim S, et al. The incretin effect in Korean subjects with normal glucose tolerance or type 2 diabetes. Clin Endocrinol (Oxf). 2014;80:221–7. ArticleCAS Google Scholar
Yabe D, Watanabe K, Sugawara K, Kuwata H, Kitamoto Y, et al. Comparison of incretin immunoassays with or without plasma extraction: incretin secretion in Japanese patients with type 2 diabetes. J Diabetes Investig. 2012;3:70–9. ArticlePubMed CentralCASPubMed Google Scholar
Vollmer K, Holst JJ, Baller B, Ellrichmann M, Nauck MA, et al. Predictors of incretin concentrations in subjects with normal, impaired, and diabetic glucose tolerance. Diabetes. 2008;57:678–87. ArticleCASPubMed Google Scholar
Vilsboll T, Krarup T, Madsbad S, Holst JJ. Defective amplification of the late phase insulin response to glucose by GIP in obese type II diabetic patients. Diabetologia. 2002;45:1111–9. ArticleCASPubMed Google Scholar
Saxena R, Hivert MF, Langenberg C, Tanaka T, Pankow JS, et al. Genetic variation in GIPR influences the glucose and insulin responses to an oral glucose challenge. Nat Genet. 2010;42:142–8. ArticlePubMed CentralCASPubMed Google Scholar
Hamasaki A, Harada N, Muraoka A, Yamane S, Joo E, et al. Not glucose tolerance but obesity impairs the numerical incretin effect in Japanese subjects. Diabetologia. 2011;54:S217. Google Scholar
Gheni G, Ogura M, Iwasaki M, Yokoi N, Minami K, et al. Glutamate acts as a key signal linking glucose metabolism to incretin/cAMP action to amplify insulin secretion. Cell Rep. 2014;9:661–73. ArticleCASPubMed Google Scholar
Park H, Park C, Kim Y, Rascati KL. Efficacy and safety of dipeptidyl peptidase-4 inhibitors in type 2 diabetes: meta-analysis. Ann Pharmacother. 2012;46:1453–69. ArticlePubMed Google Scholar
Kim YG, Hahn S, Oh TJ, Kwak SH, Park KS, et al. Differences in the glucose-lowering efficacy of dipeptidyl peptidase-4 inhibitors between Asians and Non-Asians: a systematic review and meta-analysis. Diabetologia. 2013;56:696–708. An important systematic review and meta-analysis comparing glucose-lowering effects of dipeptidyl-peptidase-4 inhibitors between Asians and non-Asians. ArticleCASPubMed Google Scholar
Kim YG, Hahn S, Oh TJ, Park KS, Cho YM. Differences in the HbA1c-lowering efficacy of glucagon-like peptide-1 analogues between Asians and non-Asians: a systematic review and meta-analysis. Diabetes Obes Metab. 2014;16(10):900–9.An important systematic review and meta-analysis comparing glucose-lowering effects of glucagon-like peptide-1 between Asians and non-Asians.
Kubota A, Matsuba I, Saito T, Nabe K, Seino Y. Secretory units of islets in transplantation index is a useful clinical marker to evaluate the efficacy of sitagliptin in treatment of type 2 diabetes mellitus. J Diabetes Investig. 2011;2:377–80. ArticlePubMed CentralCASPubMed Google Scholar
Seino Y, Rasmussen MF, Clauson P, Kaku K. The once-daily human glucagon-like peptide-1 analog, liraglutide, improves β-cell function in Japanese patients with type 2 diabetes. J Diabetes Investig. 2012;3:388–95. ArticlePubMed CentralCASPubMed Google Scholar
Iwasaki M, Hoshian F, Tsuji T, Hirose N, Matsumoto T, et al. Predicting efficacy of DPP-4 inhibitors in patients with type 2 diabetes: association of HbA1c reduction with serum eicosapentaenoic acid and docosahexaenoic acid levels. J Diabetes Investig. 2012;3:464–7. An original article identifying a novel interaction of dietary habits and HbA1c-lowering of dipeptidyl-peptidase-4 inhibitors. ArticlePubMed CentralCASPubMed Google Scholar
Senmaru T, Fukui M, Kobayashi K, Iwase H, Inada S, et al. Dipeptidyl-peptidase IV inhibitor is effective in patients with type 2 diabetes with high serum eicosapentaenoic acid concentrations. J Diabetes Investig. 2012;3:498–502. ArticlePubMed CentralCASPubMed Google Scholar
Yabe D, Kuwata H, Iwasaki M, Usui R, Kurose T, et al. Effects of fish or meat intake before and after rice on postprandial glucose excursions and incretin secretion in type 2 diabetes: meal sequence as a novel target in dietary therapies for diabetes. Diabetes. 2014;64:LB12. Google Scholar
Kubota A, Yabe D, Kanamori A, Kuroe A, Takahashi N, et al. Factors influencing the durability of the glucose-lowering effect of sitagliptin combined with a sulfonylurea. J Diabetes Investig. 2014;5:445–8. ArticlePubMed CentralCASPubMed Google Scholar
Kanamori A, Matsuba I. Factors associated with reduced efficacy of sitagliptin therapy: analysis of 93 patients with type 2 diabetes treated for 1.5 years or longer. J Clin Med Res. 2013;5:217–21. PubMed CentralPubMed Google Scholar
Yabe D, Kuwata H, Kaneko M, Ito C, Nishikino R, et al. Use of the Japanese health insurance claims database to assess the risk of acute pancreatitis in patients with diabetes: comparison of DPP-4 inhibitors with other oral antidiabetic drugs. Diabetes Obes Metab. 2015;17(4):430–34.
Kohro T, Yamazaki T, Sato H, Harada K, Ohe K, et al. Trends in antidiabetic prescription patterns in Japan from 2005 to 2011. Int Heart J. 2013;54:93–7. ArticlePubMed Google Scholar
Inzucchi SE, Bergenstal RM, Buse JB, Diamant M, Ferrannini E, et al. Management of hyperglycaemia in type 2 diabetes: a patient-centered approach. Position statement of the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia. 2012;55:1577–96. ArticleCASPubMed Google Scholar
Inzucchi SE, Bergenstal RM, Buse JB, Diamant M, Ferrannini E, et al. Management of hyperglycemia in type 2 diabetes: a patient-centered approach: position statement of the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care. 2012;35:1364–79. ArticlePubMed CentralCASPubMed Google Scholar
Yabe D, Seino Y. Dipeptidyl peptidase-4 inhibitors and sulfonylureas for type 2 diabetes: friend or foe? J Diabetes Investig. 2014;5:475–7. An article comparing incidence of severe hypoglycemia by dipeptidyl peptidase-4 inhibitors in Japan and the USA. ArticlePubMed CentralCASPubMed Google Scholar
Takahashi H, Shibasaki T, Park JH, Hidaka S, Takahashi T, et al. Role of Epac2A/Rap1 signaling in interplay between incretin and sulfonylurea in insulin secretion. Diabetes. 2015;64(4):1262–72.
Shibasaki T, Takahashi T, Takahashi H, Seino S. Cooperation between cAMP signalling and sulfonylurea in insulin secretion. Diabetes Obes Metab. 2014;16 Suppl 1:118–25. ArticleCASPubMed Google Scholar
Takahashi T, Shibasaki T, Takahashi H, Sugawara K, Ono A, et al. Antidiabetic sulfonylureas and cAMP cooperatively activate Epac2A. Sci Signal. 2013;6:ra94. PubMed Google Scholar
Mukai E, Fujimoto S, Sato H, Oneyama C, Kominato R, et al. Exendin-4 suppresses SRC activation and reactive oxygen species production in diabetic Goto-Kakizaki rat islets in an Epac-dependent manner. Diabetes. 2010;60:218–26. ArticlePubMed CentralPubMed Google Scholar