Role of Oxygen Free Radicals, Nitric Oxide and Mitochondria in Mediating Cardiac Alterations During Liver Cirrhosis Induced by Thioacetamide (original) (raw)

References

  1. Wang, T., Shankar, K., Ronis, M. J., & Mehendale, H. M. (2000). Potentiation of thioacetamide liver injury in diabetic rats is due to induced CYP2E1. Journal of Pharmacology and Experimental Therapeutics, 294, 473–479.
    CAS PubMed Google Scholar
  2. Ambrose, A. M., De, E. F., & Rather, L. J. (1949). Toxicity of thioacetamide in rats. The Journal of Industrial Hygiene and Toxicology, 31, 158–161.
    CAS PubMed Google Scholar
  3. Fitzhugh, O. G., & Nelson, A. A. (1948). Liver tumors in rats fed thiourea or thioacetamide. Science, 108, 626–628.
    Article CAS PubMed Google Scholar
  4. Rather, L. J. (1951). Experimental alteration of nuclear and cytoplasmic components of the liver cell with thioacetamide. I. Early onset and reversibility of volume changes of the nucleolus, nucleus and cytoplasm. Bulletin of the Johns Hopkins Hospital, 88, 38–58.
    CAS PubMed Google Scholar
  5. Al-Hamoudi, W. K. (2010). Cardiovascular changes in cirrhosis: Pathogenesis and clinical implications. Saudi Journal of Gastroenterology, 16, 145–153.
    Article PubMed PubMed Central Google Scholar
  6. Fattouh, A. M., El-Shabrawi, M. H., Mahmoud, E. H., & Ahmed, W. O. (2016). Evaluation of cardiac functions of cirrhotic children using serum brain natriuretic peptide and tissue Doppler imaging. Annals of Pediatric Cardiology, 9, 22–28.
    Article PubMed PubMed Central Google Scholar
  7. Milic, S., Lulic, D., Stimac, D., Ruzic, A., & Zaputovic, L. (2016). Cardiac manifestations in alcoholic liver disease. Postgraduate Medical Journal, 92, 235–239.
    Article PubMed Google Scholar
  8. Naschitz, J. E., Slobodin, G., Lewis, R. J., Zuckerman, E., & Yeshurun, D. (2000). Heart diseases affecting the liver and liver diseases affecting the heart. American Heart Journal, 140, 111–120.
    Article CAS PubMed Google Scholar
  9. Such, J., Frances, R., & Perez-Mateo, M. (2002). Nitric oxide in patients with cirrhosis and bacterial infections. Metabolic Brain Disease, 17, 303–309.
    Article CAS PubMed Google Scholar
  10. Liu, H., Ma, Z., & Lee, S. S. (2000). Contribution of nitric oxide to the pathogenesis of cirrhotic cardiomyopathy in bile duct-ligated rats. Gastroenterology, 118, 937–944.
    Article CAS PubMed Google Scholar
  11. Garcia-Estan, J., Ortiz, M. C., & Lee, S. S. (2002). Nitric oxide and renal and cardiac dysfunction in cirrhosis. Clinical Science (Lond), 102, 213–222.
    Article CAS Google Scholar
  12. Sumida, Y., Niki, E., Naito, Y., & Yoshikawa, T. (2013). Involvement of free radicals and oxidative stress in NAFLD/NASH. Free Radical Research, 47, 869–880.
    Article CAS PubMed Google Scholar
  13. Ramachandran, A., Prabhu, R., Thomas, S., Reddy, J. B., Pulimood, A., & Balasubramanian, K. A. (2002). Intestinal mucosal alterations in experimental cirrhosis in the rat: Role of oxygen free radicals. Hepatology, 35, 622–629.
    Article CAS PubMed Google Scholar
  14. Natarajan, S. K., Ramamoorthy, P., Thomas, S., Basivireddy, J., Kang, G., Ramachandran, A., et al. (2006). Intestinal mucosal alterations in rats with carbon tetrachloride-induced cirrhosis: Changes in glycosylation and luminal bacteria. Hepatology, 43, 837–846.
    Article CAS PubMed Google Scholar
  15. Natarajan, S. K., Basivireddy, J., Ramachandran, A., Thomas, S., Ramamoorthy, P., Pulimood, A. B., et al. (2006). Renal damage in experimentally-induced cirrhosis in rats: Role of oxygen free radicals. Hepatology, 43, 1248–1256.
    Article CAS PubMed Google Scholar
  16. Yang, Y. Y., Liu, H., Nam, S. W., Kunos, G., & Lee, S. S. (2010). Mechanisms of TNFalpha-induced cardiac dysfunction in cholestatic bile duct-ligated mice: Interaction between TNFα and endocannabinoids. Journal of Hepatology, 53, 298–306.
    Article CAS PubMed PubMed Central Google Scholar
  17. Ljubuncic, P., Tanne, Z., & Bomzon, A. (2000). Evidence of a systemic phenomenon for oxidative stress in cholestatic liver disease. Gut, 47, 710–716.
    Article CAS PubMed PubMed Central Google Scholar
  18. Hori, N., Okanoue, T., Sawa, Y., Mori, T., & Kashima, K. (1993). Hemodynamic characterization in experimental liver cirrhosis induced by thioacetamide administration. Digestive Diseases and Sciences, 38, 2195–2202.
    Article CAS PubMed Google Scholar
  19. Sastry, K. V., Moudgal, R. P., Mohan, J., Tyagi, J. S., & Rao, G. S. (2002). Spectrophotometric determination of serum nitrite and nitrate by copper-cadmium alloy. Analytical Biochemistry, 306, 79–82.
    Article CAS PubMed Google Scholar
  20. Ohkawa, H., Ohishi, N., & Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry, 95, 351–358.
    Article CAS PubMed Google Scholar
  21. Chan, H. W., & Levett, G. (1977). Autoxidation of methyl linoleate. Separation and analysis of isomeric mixtures of methyl linoleate hydroperoxides and methyl hydroxylinoleates. Lipids, 12, 99–104.
    Article CAS PubMed Google Scholar
  22. Sohal, R. S., Agarwal, S., Dubey, A., & Orr, W. C. (1993). Protein oxidative damage is associated with life expectancy of houseflies. Proceedings of the National Academy of Sciences USA, 90, 7255–7259.
    Article CAS Google Scholar
  23. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193, 265–275.
    CAS PubMed Google Scholar
  24. Takeyama, N., Matsuo, N., & Tanaka, T. (1993). Oxidative damage to mitochondria is mediated by the Ca2+-dependent inner-membrane permeability transition. Biochemical Journal, 294(Pt 3), 719–725.
    Article CAS PubMed PubMed Central Google Scholar
  25. Madesh, M., & Balasubramanian, K. A. (1997). Nitric oxide inhibits enterocyte mitochondrial phospholipase D. FEBS Letters, 413, 269–272.
    Article CAS PubMed Google Scholar
  26. Zhao, T. C., Taher, M. M., Valerie, K. C., & Kukreja, R. C. (2001). p38 Triggers late preconditioning elicited by anisomycin in heart: Involvement of NF-κB and iNOS. Circulation Research, 89, 915–922.
    Article CAS PubMed Google Scholar
  27. Clerk, A., Fuller, S. J., Michael, A., & Sugden, P. H. (1998). Stimulation of “stress-regulated” mitogen-activated protein kinases (stress-activated protein kinases/c-Jun N-terminal kinases and p38-mitogen-activated protein kinases) in perfused rat hearts by oxidative and other stresses. Journal of Biological Chemistry, 273, 7228–7234.
    Article CAS PubMed Google Scholar
  28. van Obbergh, L., Vallieres, Y., & Blaise, G. (1996). Cardiac modifications occurring in the ascitic rat with biliary cirrhosis are nitric oxide related. Journal of Hepatology, 24, 747–752.
    Article PubMed Google Scholar
  29. Sarma, D., Hajovsky, H., Koen, Y. M., Galeva, N. A., Williams, T. D., Staudinger, J. L., & Hanzlik, R. P. (2012). Covalent modification of lipids and proteins in rat hepatocytes and in vitro by thioacetamide metabolites. Chemical Research in Toxicology, 25, 1868–1877.
    Article CAS PubMed PubMed Central Google Scholar
  30. Metze, K., & Brandt, G. (1981). Copper and zinc content of liver, heart, skeletal muscle, and brain, in acute thioacetamide intoxication of rats. Hepato-Gastroenterology, 28, 99–101.
    CAS PubMed Google Scholar
  31. Liao, P., Georgakopoulos, D., Kovacs, A., Zheng, M., Lerner, D., Pu, H., et al. (2001). The in vivo role of p38 MAP kinases in cardiac remodeling and restrictive cardiomyopathy. Proceedings of the National Academy of Sciences USA, 98, 12283–12288.
    Article CAS Google Scholar
  32. Shimizu, M., Ogura, K., Mizoguchi, I., Chiba, Y., Higuchi, K., Ohtsuka, H., et al. (2012). IL-27 promotes nitric oxide production induced by LPS through STAT1, NF-κB and MAPKs. Immunobiology, 218, 628–634.
    Article PubMed Google Scholar
  33. Shiva, S., Moellering, D., Ramachandran, A., Levonen, A. L., Landar, A., Venkatraman, A., et al. (2004). Redox signalling: From nitric oxide to oxidized lipids. Biochemical Society Symposia, 71, 107–120.
    Article CAS Google Scholar
  34. Shafaroodi, H., Ebrahimi, F., Moezi, L., Hashemi, M., Doostar, Y., Ghasemi, M., & Dehpour, A. R. (2010). Cholestasis induces apoptosis in mice cardiac cells: The possible role of nitric oxide and oxidative stress. Liver International, 30, 898–905.
    Article CAS PubMed Google Scholar
  35. Beckman, J. S., & Koppenol, W. H. (1996). Nitric oxide, superoxide, and peroxynitrite: The good, the bad, and ugly. American Journal of Physiology, 271, C1424–C1437.
    CAS PubMed Google Scholar
  36. Mani, A. R., Ippolito, S., Ollosson, R., & Moore, K. P. (2006). Nitration of cardiac proteins is associated with abnormal cardiac chronotropic responses in rats with biliary cirrhosis. Hepatology, 43, 847–856.
    Article CAS PubMed Google Scholar
  37. Dai, D. F., Johnson, S. C., Villarin, J. J., Chin, M. T., Nieves-Cintron, M., Chen, T., et al. (2011). Mitochondrial oxidative stress mediates angiotensin II-induced cardiac hypertrophy and Galphaq overexpression-induced heart failure. Circulation Research, 108, 837–846.
    Article CAS PubMed PubMed Central Google Scholar
  38. Montaigne, D., Marechal, X., Coisne, A., Debry, N., Modine, T., Fayad, G., et al. (2014). Myocardial contractile dysfunction is associated with impaired mitochondrial function and dynamics in type 2 diabetic but not in obese patients. Circulation, 130, 554–564.
    Article CAS PubMed Google Scholar
  39. Sharov, V. G., Todor, A. V., Silverman, N., Goldstein, S., & Sabbah, H. N. (2000). Abnormal mitochondrial respiration in failed human myocardium. Journal of Molecular and Cellular Cardiology, 32, 2361–2367.
    Article CAS PubMed Google Scholar
  40. Pham, T., Loiselle, D., Power, A., & Hickey, A. J. (2014). Mitochondrial inefficiencies and anoxic ATP hydrolysis capacities in diabetic rat heart. American Journal of Physiology: Cell Physiology, 307, C499–C507.
    Article CAS PubMed Google Scholar
  41. Lemasters, J. J., Theruvath, T. P., Zhong, Z., & Nieminen, A. L. (2009). Mitochondrial calcium and the permeability transition in cell death. Biochimica et Biophysica Acta, 1787, 1395–1401.
    Article CAS PubMed PubMed Central Google Scholar
  42. Kajander, O. A., Karhunen, P. J., & Jacobs, H. T. (2002). The relationship between somatic mtDNA rearrangements, human heart disease and aging. Human Molecular Genetics, 11, 317–324.
    Article CAS PubMed Google Scholar
  43. Zavodnik, I. B., Dremza, I. K., Cheshchevik, V. T., Lapshina, E. A., & Zamaraewa, M. (2013). Oxidative damage of rat liver mitochondria during exposure to t-butyl hydroperoxide. Role of Ca2+ ions in oxidative processes. Life Sciences, 92, 1110–1117.
    Article CAS PubMed Google Scholar
  44. Murphy, M. P., Echtay, K. S., Blaikie, F. H., Asin-Cayuela, J., Cocheme, H. M., Green, K., et al. (2003). Superoxide activates uncoupling proteins by generating carbon-centered radicals and initiating lipid peroxidation: Studies using a mitochondria-targeted spin trap derived from alpha-phenyl-_N_-tert-butylnitrone. Journal of Biological Chemistry, 278, 48534–48545.
    Article CAS PubMed Google Scholar
  45. Ide, T., Tsutsui, H., Hayashidani, S., Kang, D., Suematsu, N., Nakamura, K., et al. (2001). Mitochondrial DNA damage and dysfunction associated with oxidative stress in failing hearts after myocardial infarction. Circulation Research, 88, 529–535.
    Article CAS PubMed Google Scholar

Download references