Role of Oxygen Free Radicals, Nitric Oxide and Mitochondria in Mediating Cardiac Alterations During Liver Cirrhosis Induced by Thioacetamide (original) (raw)
References
Wang, T., Shankar, K., Ronis, M. J., & Mehendale, H. M. (2000). Potentiation of thioacetamide liver injury in diabetic rats is due to induced CYP2E1. Journal of Pharmacology and Experimental Therapeutics,294, 473–479. CASPubMed Google Scholar
Ambrose, A. M., De, E. F., & Rather, L. J. (1949). Toxicity of thioacetamide in rats. The Journal of Industrial Hygiene and Toxicology,31, 158–161. CASPubMed Google Scholar
Fitzhugh, O. G., & Nelson, A. A. (1948). Liver tumors in rats fed thiourea or thioacetamide. Science,108, 626–628. ArticleCASPubMed Google Scholar
Rather, L. J. (1951). Experimental alteration of nuclear and cytoplasmic components of the liver cell with thioacetamide. I. Early onset and reversibility of volume changes of the nucleolus, nucleus and cytoplasm. Bulletin of the Johns Hopkins Hospital,88, 38–58. CASPubMed Google Scholar
Al-Hamoudi, W. K. (2010). Cardiovascular changes in cirrhosis: Pathogenesis and clinical implications. Saudi Journal of Gastroenterology,16, 145–153. ArticlePubMedPubMed Central Google Scholar
Fattouh, A. M., El-Shabrawi, M. H., Mahmoud, E. H., & Ahmed, W. O. (2016). Evaluation of cardiac functions of cirrhotic children using serum brain natriuretic peptide and tissue Doppler imaging. Annals of Pediatric Cardiology,9, 22–28. ArticlePubMedPubMed Central Google Scholar
Milic, S., Lulic, D., Stimac, D., Ruzic, A., & Zaputovic, L. (2016). Cardiac manifestations in alcoholic liver disease. Postgraduate Medical Journal,92, 235–239. ArticlePubMed Google Scholar
Naschitz, J. E., Slobodin, G., Lewis, R. J., Zuckerman, E., & Yeshurun, D. (2000). Heart diseases affecting the liver and liver diseases affecting the heart. American Heart Journal,140, 111–120. ArticleCASPubMed Google Scholar
Such, J., Frances, R., & Perez-Mateo, M. (2002). Nitric oxide in patients with cirrhosis and bacterial infections. Metabolic Brain Disease,17, 303–309. ArticleCASPubMed Google Scholar
Liu, H., Ma, Z., & Lee, S. S. (2000). Contribution of nitric oxide to the pathogenesis of cirrhotic cardiomyopathy in bile duct-ligated rats. Gastroenterology,118, 937–944. ArticleCASPubMed Google Scholar
Garcia-Estan, J., Ortiz, M. C., & Lee, S. S. (2002). Nitric oxide and renal and cardiac dysfunction in cirrhosis. Clinical Science (Lond),102, 213–222. ArticleCAS Google Scholar
Sumida, Y., Niki, E., Naito, Y., & Yoshikawa, T. (2013). Involvement of free radicals and oxidative stress in NAFLD/NASH. Free Radical Research,47, 869–880. ArticleCASPubMed Google Scholar
Ramachandran, A., Prabhu, R., Thomas, S., Reddy, J. B., Pulimood, A., & Balasubramanian, K. A. (2002). Intestinal mucosal alterations in experimental cirrhosis in the rat: Role of oxygen free radicals. Hepatology,35, 622–629. ArticleCASPubMed Google Scholar
Natarajan, S. K., Ramamoorthy, P., Thomas, S., Basivireddy, J., Kang, G., Ramachandran, A., et al. (2006). Intestinal mucosal alterations in rats with carbon tetrachloride-induced cirrhosis: Changes in glycosylation and luminal bacteria. Hepatology,43, 837–846. ArticleCASPubMed Google Scholar
Natarajan, S. K., Basivireddy, J., Ramachandran, A., Thomas, S., Ramamoorthy, P., Pulimood, A. B., et al. (2006). Renal damage in experimentally-induced cirrhosis in rats: Role of oxygen free radicals. Hepatology,43, 1248–1256. ArticleCASPubMed Google Scholar
Yang, Y. Y., Liu, H., Nam, S. W., Kunos, G., & Lee, S. S. (2010). Mechanisms of TNFalpha-induced cardiac dysfunction in cholestatic bile duct-ligated mice: Interaction between TNFα and endocannabinoids. Journal of Hepatology,53, 298–306. ArticleCASPubMedPubMed Central Google Scholar
Ljubuncic, P., Tanne, Z., & Bomzon, A. (2000). Evidence of a systemic phenomenon for oxidative stress in cholestatic liver disease. Gut,47, 710–716. ArticleCASPubMedPubMed Central Google Scholar
Hori, N., Okanoue, T., Sawa, Y., Mori, T., & Kashima, K. (1993). Hemodynamic characterization in experimental liver cirrhosis induced by thioacetamide administration. Digestive Diseases and Sciences,38, 2195–2202. ArticleCASPubMed Google Scholar
Sastry, K. V., Moudgal, R. P., Mohan, J., Tyagi, J. S., & Rao, G. S. (2002). Spectrophotometric determination of serum nitrite and nitrate by copper-cadmium alloy. Analytical Biochemistry,306, 79–82. ArticleCASPubMed Google Scholar
Ohkawa, H., Ohishi, N., & Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry,95, 351–358. ArticleCASPubMed Google Scholar
Chan, H. W., & Levett, G. (1977). Autoxidation of methyl linoleate. Separation and analysis of isomeric mixtures of methyl linoleate hydroperoxides and methyl hydroxylinoleates. Lipids,12, 99–104. ArticleCASPubMed Google Scholar
Sohal, R. S., Agarwal, S., Dubey, A., & Orr, W. C. (1993). Protein oxidative damage is associated with life expectancy of houseflies. Proceedings of the National Academy of Sciences USA,90, 7255–7259. ArticleCAS Google Scholar
Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry,193, 265–275. CASPubMed Google Scholar
Takeyama, N., Matsuo, N., & Tanaka, T. (1993). Oxidative damage to mitochondria is mediated by the Ca2+-dependent inner-membrane permeability transition. Biochemical Journal,294(Pt 3), 719–725. ArticleCASPubMedPubMed Central Google Scholar
Madesh, M., & Balasubramanian, K. A. (1997). Nitric oxide inhibits enterocyte mitochondrial phospholipase D. FEBS Letters,413, 269–272. ArticleCASPubMed Google Scholar
Zhao, T. C., Taher, M. M., Valerie, K. C., & Kukreja, R. C. (2001). p38 Triggers late preconditioning elicited by anisomycin in heart: Involvement of NF-κB and iNOS. Circulation Research,89, 915–922. ArticleCASPubMed Google Scholar
Clerk, A., Fuller, S. J., Michael, A., & Sugden, P. H. (1998). Stimulation of “stress-regulated” mitogen-activated protein kinases (stress-activated protein kinases/c-Jun N-terminal kinases and p38-mitogen-activated protein kinases) in perfused rat hearts by oxidative and other stresses. Journal of Biological Chemistry,273, 7228–7234. ArticleCASPubMed Google Scholar
van Obbergh, L., Vallieres, Y., & Blaise, G. (1996). Cardiac modifications occurring in the ascitic rat with biliary cirrhosis are nitric oxide related. Journal of Hepatology,24, 747–752. ArticlePubMed Google Scholar
Sarma, D., Hajovsky, H., Koen, Y. M., Galeva, N. A., Williams, T. D., Staudinger, J. L., & Hanzlik, R. P. (2012). Covalent modification of lipids and proteins in rat hepatocytes and in vitro by thioacetamide metabolites. Chemical Research in Toxicology,25, 1868–1877. ArticleCASPubMedPubMed Central Google Scholar
Metze, K., & Brandt, G. (1981). Copper and zinc content of liver, heart, skeletal muscle, and brain, in acute thioacetamide intoxication of rats. Hepato-Gastroenterology,28, 99–101. CASPubMed Google Scholar
Liao, P., Georgakopoulos, D., Kovacs, A., Zheng, M., Lerner, D., Pu, H., et al. (2001). The in vivo role of p38 MAP kinases in cardiac remodeling and restrictive cardiomyopathy. Proceedings of the National Academy of Sciences USA,98, 12283–12288. ArticleCAS Google Scholar
Shimizu, M., Ogura, K., Mizoguchi, I., Chiba, Y., Higuchi, K., Ohtsuka, H., et al. (2012). IL-27 promotes nitric oxide production induced by LPS through STAT1, NF-κB and MAPKs. Immunobiology,218, 628–634. ArticlePubMed Google Scholar
Shiva, S., Moellering, D., Ramachandran, A., Levonen, A. L., Landar, A., Venkatraman, A., et al. (2004). Redox signalling: From nitric oxide to oxidized lipids. Biochemical Society Symposia, 71, 107–120. ArticleCAS Google Scholar
Shafaroodi, H., Ebrahimi, F., Moezi, L., Hashemi, M., Doostar, Y., Ghasemi, M., & Dehpour, A. R. (2010). Cholestasis induces apoptosis in mice cardiac cells: The possible role of nitric oxide and oxidative stress. Liver International,30, 898–905. ArticleCASPubMed Google Scholar
Beckman, J. S., & Koppenol, W. H. (1996). Nitric oxide, superoxide, and peroxynitrite: The good, the bad, and ugly. American Journal of Physiology,271, C1424–C1437. CASPubMed Google Scholar
Mani, A. R., Ippolito, S., Ollosson, R., & Moore, K. P. (2006). Nitration of cardiac proteins is associated with abnormal cardiac chronotropic responses in rats with biliary cirrhosis. Hepatology,43, 847–856. ArticleCASPubMed Google Scholar
Dai, D. F., Johnson, S. C., Villarin, J. J., Chin, M. T., Nieves-Cintron, M., Chen, T., et al. (2011). Mitochondrial oxidative stress mediates angiotensin II-induced cardiac hypertrophy and Galphaq overexpression-induced heart failure. Circulation Research,108, 837–846. ArticleCASPubMedPubMed Central Google Scholar
Montaigne, D., Marechal, X., Coisne, A., Debry, N., Modine, T., Fayad, G., et al. (2014). Myocardial contractile dysfunction is associated with impaired mitochondrial function and dynamics in type 2 diabetic but not in obese patients. Circulation, 130, 554–564. ArticleCASPubMed Google Scholar
Sharov, V. G., Todor, A. V., Silverman, N., Goldstein, S., & Sabbah, H. N. (2000). Abnormal mitochondrial respiration in failed human myocardium. Journal of Molecular and Cellular Cardiology,32, 2361–2367. ArticleCASPubMed Google Scholar
Pham, T., Loiselle, D., Power, A., & Hickey, A. J. (2014). Mitochondrial inefficiencies and anoxic ATP hydrolysis capacities in diabetic rat heart. American Journal of Physiology: Cell Physiology, 307, C499–C507. ArticleCASPubMed Google Scholar
Lemasters, J. J., Theruvath, T. P., Zhong, Z., & Nieminen, A. L. (2009). Mitochondrial calcium and the permeability transition in cell death. Biochimica et Biophysica Acta,1787, 1395–1401. ArticleCASPubMedPubMed Central Google Scholar
Kajander, O. A., Karhunen, P. J., & Jacobs, H. T. (2002). The relationship between somatic mtDNA rearrangements, human heart disease and aging. Human Molecular Genetics,11, 317–324. ArticleCASPubMed Google Scholar
Zavodnik, I. B., Dremza, I. K., Cheshchevik, V. T., Lapshina, E. A., & Zamaraewa, M. (2013). Oxidative damage of rat liver mitochondria during exposure to t-butyl hydroperoxide. Role of Ca2+ ions in oxidative processes. Life Sciences,92, 1110–1117. ArticleCASPubMed Google Scholar
Murphy, M. P., Echtay, K. S., Blaikie, F. H., Asin-Cayuela, J., Cocheme, H. M., Green, K., et al. (2003). Superoxide activates uncoupling proteins by generating carbon-centered radicals and initiating lipid peroxidation: Studies using a mitochondria-targeted spin trap derived from alpha-phenyl-_N_-tert-butylnitrone. Journal of Biological Chemistry,278, 48534–48545. ArticleCASPubMed Google Scholar
Ide, T., Tsutsui, H., Hayashidani, S., Kang, D., Suematsu, N., Nakamura, K., et al. (2001). Mitochondrial DNA damage and dysfunction associated with oxidative stress in failing hearts after myocardial infarction. Circulation Research,88, 529–535. ArticleCASPubMed Google Scholar