Prospective Isolation and Functional Analysis of Stem and Differentiated Cells from the Mouse Mammary Gland (original) (raw)
References
Reya, T., Morrison, S. J., Clarke, M. F., & Weissman, I. L. (2001). Stem cells, cancer, and cancer stem cells. Nature, 414(6859), 105–111, Nov 1. PubMedCAS Google Scholar
Sell, S. (2004). Stem cell origin of cancer and differentiation therapy. Critical Reviews in Oncology/Hematology, 51(1), 1–28, Jul. PubMed Google Scholar
Singh, S. K., Clarke, I. D., Hide, T., & Dirks, P. B. (2004). Cancer stem cells in nervous system tumors. Oncogene, 23(43), 7267–7273, Sep 20. PubMedCAS Google Scholar
Wang, J. C., & Dick, J. E. (2005). Cancer stem cells: Lessons from leukemia. Trends in Cell Biology, 15(9), 494–501, Sep. PubMedCAS Google Scholar
Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J., & Clarke, M. F. (2003). Prospective identification of tumorigenic breast cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 100(7), 3983–3988, Apr 1. PubMedCAS Google Scholar
Bonnet, D., & Dick, J. E. (1997). Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat. Med., 3(7), 730–737, Jul. PubMedCAS Google Scholar
Galli, R., Binda, E., Orfanelli, U., et al. (2004). Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Research, 64(19), 7011–7021, Oct 1. PubMedCAS Google Scholar
Lapidot, T., Sirard, C., Vormoor, J., et al. (1994). A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature, 367(6464), 645–648, Feb 17. PubMedCAS Google Scholar
Singh, S. K., Clarke, I. D., Terasaki, M., et al. (2003). Identification of a cancer stem cell in human brain tumors. Cancer Research, 63(18), 5821–5828, Sep 15. PubMedCAS Google Scholar
Singh, S. K., Hawkins, C., Clarke, I. D., et al. (2004). Identification of human brain tumour initiating cells. Nature, 432(7015), 396–401, Nov 18. PubMedCAS Google Scholar
Alonso, L., & Fuchs, E. (2003). Stem cells in the skin: Waste not, Wnt not. Genes & Development, 17(10), 1189–1200, May 15. CAS Google Scholar
Galli, R., Gritti, A., Bonfanti, L., & Vescovi, A. L. (2003). Neural stem cells: An overview. Circulation Research, 92(6), 598–608, Apr 4. PubMedCAS Google Scholar
Potten, C. S., & Loeffler, M. (1990). Stem cells: Attributes, cycles, spirals, pitfalls and uncertainties. Lessons for and from the crypt. Development, 110(4), 1001–1020, Dec. PubMedCAS Google Scholar
Seaberg, R. M., & van der Kooy, D. (2003). Stem and progenitor cells: The premature desertion of rigorous definitions. Trends in Neurosciences, 26(3), 125–131, Mar. PubMedCAS Google Scholar
Smith, C. (2003). Hematopoietic stem cells and hematopoiesis. Cancer Control, 10(1), 9–16, Jan–Feb. PubMed Google Scholar
Wicha, M. S., Liu, S., & Dontu, G. (2006). Cancer stem cells: An old idea—A paradigm shift. Cancer Research, 66(4), 1883–1890; discussion 1895–1886, Feb 15. PubMedCAS Google Scholar
Dontu, G., Abdallah, W. M., Foley, J. M., et al. (2003). In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes & Development, 17(10), 1253–1270, May 15. CAS Google Scholar
Reynolds, B. A., & Weiss, S. (1996). Clonal and population analyses demonstrate that an EGF-responsive mammalian embryonic CNS precursor is a stem cell. Developments in Biologicals, 175(1), 1–13, Apr 10. CAS Google Scholar
Weiss, S., Reynolds, B. A., Vescovi, A. L., Morshead, C., Craig, C. G., & van der Kooy, D. (1996). Is there a neural stem cell in the mammalian forebrain? Trends in Neurosciences, 19(9), 387–393, Sep. PubMedCAS Google Scholar
Miller, S. J., Lavker, R. M., & Sun, T. T. (2005). Interpreting epithelial cancer biology in the context of stem cells: Tumor properties and therapeutic implications. Biochimica et Biophysica Acta, 1756(1), 25–52, Sep 25. PubMedCAS Google Scholar
Liu, S., Dontu, G., & Wicha, M. S. (2005). Mammary stem cells, self-renewal pathways, and carcinogenesis. Breast Cancer Research, 7(3), 86–95. PubMedCAS Google Scholar
Salsbury, A. J. (1975). The significance of the circulating cancer cell. Cancer Treatment Reviews, 2(1), 55–72, Mar. PubMedCAS Google Scholar
DeOme, K. B., Faulkin Jr., L. J., Bern, H. A., & Blair, P. B. (1959). Development of mammary tumors from hyperplastic alveolar nodules transplanted into gland-free mammary fat pads of female C3H mice. Cancer Research, 19(5), 515–520, Jun. PubMedCAS Google Scholar
Medina, D. (1996). The mammary gland: A unique organ for the study of development and tumorigenesis. Journal of Mammary Gland Biology and Neoplasia, 1(1), 5–19, Jan. PubMedCAS Google Scholar
Kordon, E. C., & Smith, G. H. (1998).An entire functional mammary gland may comprise the progeny from a single cell. Development, 125(10), 1921–1930, May. PubMedCAS Google Scholar
Smith, G. H. (1996). Experimental mammary epithelial morphogenesis in an in vivo model: Evidence for distinct cellular progenitors of the ductal and lobular phenotype. Breast Cancer Research and Treatment, 39(1), 21–31. PubMedCAS Google Scholar
Shackleton, M., Vaillant, F., Simpson, K. J., et al. (2006). Generation of a functional mammary gland from a single stem cell. Nature, 439(7072), 84–88, Jan 5. PubMedCAS Google Scholar
Stingl, J., Eirew, P., Ricketson, I., et al. (2006). Purification and unique properties of mammary epithelial stem cells. Nature, 439(7079), 993–997, Feb 23. PubMedCAS Google Scholar
Welm, B. E., Tepera, S. B., Venezia, T., Graubert, T. A., Rosen, J. M., & Goodell, M. A. (2002). Sca-1(pos) cells in the mouse mammary gland represent an enriched progenitor cell population. Developments in Biologicals, 245(1), 42–56, May 1. CAS Google Scholar
Kenney, N. J., Smith, G. H., Lawrence, E., Barrett, J. C., & Salomon, D. S. (2001).Identification of stem cell units in the terminal end bud and duct of the mouse mammary gland. Journal of Biomedicine and Biotechnology, 1(3), 133–143. PubMedCAS Google Scholar
Richert, M. M., Schwertfeger, K. L., Ryder, J. W., & Anderson, S. M. (2000). An atlas of mouse mammary gland development. Journal of Mammary Gland Biology and Neoplasia, 5(2), 227–241, Apr. PubMedCAS Google Scholar
Bartek, J., Durban, E. M., Hallowes, R. C., & Taylor-Papadimitriou, J. A (1985). subclass of luminal epithelial cells in the human mammary gland, defined by antibodies to cytokeratins. Journal of Cell Science, 75, 17–33, Apr. PubMedCAS Google Scholar
Smalley, M., & Ashworth, A. (2003). Stem cells and breast cancer: A field in transit. Nature Reviews. Cancer, 3(11), 832–844, Nov. PubMedCAS Google Scholar
Williams, J. M., & Daniel, C. W. (1983). Mammary ductal elongation: Differentiation of myoepithelium and basal lamina during branching morphogenesis. Developments in Biologicals, 97(2), 274–290, Jun. CAS Google Scholar
Srinivasan, K., Strickland, P., Valdes, A., Shin, G. C., & Hinck, L. (2003). Netrin-1/neogenin interaction stabilizes multipotent progenitor cap cells during mammary gland morphogenesis. Developments in Cell, 4(3), 371–382, Mar. CAS Google Scholar
Sapino, A., Macri, L., Gugliotta, P., et al. (1993). mmunophenotypic properties and estrogen dependency of budding cell structures in the developing mouse mammary gland. Differentiation, 55(1), 13–18, Dec. PubMedCAS Google Scholar
Chepko, G., & Smith, G. H. (1997). Three division-competent, structurally-distinct cell populations contribute to murine mammary epithelial renewal. Tissue & Cell, 29(2), 239–253, Apr. CAS Google Scholar
Smalley, M. J. (1995). Clonal characterisation of mouse mammary luminal epithelial and myoepithelial cells. University of London.
Smalley, M. J., Titley, J., & O'Hare, M. J. (1998). Clonal characterization of mouse mammary luminal epithelial and myoepithelial cells separated by fluorescence-activated cell sorting. In vitro Cellular & Developmental Biology. Animal, 34(9), 711–721, Oct. CAS Google Scholar
Smalley, M. J., Titley, J., Paterson, H., Perusinghe, N., Clarke, C., & O'Hare, M. J. (1999). Differentiation of separated mouse mammary luminal epithelial and myoepithelial cells cultured on EHS matrix analyzed by indirect immunofluorescence of cytoskeletal antigens. Journal of Histochemistry and Cytochemistry, 47(12), 1513–1524, Dec. PubMedCAS Google Scholar
O'Hare, M. J., Ormerod, M. G., Monaghan, P., Lane, E. B., & Gusterson, B. A. (1991). Characterization in vitro of luminal and myoepithelial cells isolated from the human mammary gland by cell sorting. Differentiation, 46(3), 209–221, Apr. PubMed Google Scholar
Dundas, S. R., Ormerod, M. G., Gusterson, B. A., & O’Hare, M. J. (1991). Characterization of luminal and basal cells flow-sorted from the adult rat mammary parenchyma. Journal of Cell Science, 100(Pt 3), 459–471, Nov. PubMed Google Scholar
Naylor, S., Smalley, M. J., Robertson, D., Gusterson, B. A., Edwards, P. A., & Dale, T. C. (2000). Retroviral expression of Wnt-1 and Wnt-7b produces different effects in mouse mammary epithelium. Journal of Cell Science, 113(Pt 12), 2129–2138, Jun. PubMedCAS Google Scholar
Sleeman, K. E., Kendrick, H., Ashworth, A., Isacke, C.M., Smalley, M. J. (2006). CD24 staining of mouse mammary gland cells defines luminal epithelial, myoepithelial/basal and non-epithelial cells. Breast Cancer Research, 8(1), R7. Google Scholar
Sonnenberg, A., Daams, H., Van der Valk, M. A., Hilkens, J., & Hilgers, J. (1986). Development of mouse mammary gland: Identification of stages in differentiation of luminal and myoepithelial cells using monoclonal antibodies and polyvalent antiserum against keratin. Journal of Histochemistry and Cytochemistry, 34(8), 1037–1046, Aug. PubMedCAS Google Scholar
Das, N. K., Hosick, H. L., & Nandi, S. (1974). Influence of seeding density on multicellular organization and nuclear events in cultures of normal and neoplastic mouse mammary epithelium. Journal of the National Cancer Institute, 52(3), 849–861, Mar. PubMedCAS Google Scholar
Singh, S., & Gupta, P. D. (1994). Tampering with cytokeratin expression results in cell dysfunction. Epithelial Cell Biology, 3(2), 79–83. PubMedCAS Google Scholar
Vassar, R., Coulombe, P. A., Degenstein, L., Albers, K., & Fuchs, E. (1991). Mutant keratin expression in transgenic mice causes marked abnormalities resembling a human genetic skin disease. Cell, 64(2), 365–380, Jan 25. PubMedCAS Google Scholar
Kumemura, H., Harada, M., Omary, M. B., et al. (2004). Aggregation and loss of cytokeratin filament networks inhibit golgi organization in liver-derived epithelial cell lines. Cell Motility and the Cytoskeleton, 57(1), 37–52, Jan. PubMedCAS Google Scholar
Parry, G., Beck, J. C., Moss, L., Bartley, J., & Ojakian, G. K. (1990). Determination of apical membrane polarity in mammary epithelial cell cultures: the role of cell–cell, cell–substratum, and membrane–cytoskeleton interactions. Experimental Cell Research, 188(2), 302–311, Jun. PubMedCAS Google Scholar
Taylor-Papadimitriou, J., & Lane, E. B. (1987). Keratin expression in the mammary gland. In C. M. Neville, & C. W. Daniel (Eds.), The mammary gland: Development, regulation and function (pp. 181–215). New York: Plenum. Google Scholar
Fata, J. E., Werb, Z., & Bissell, M. J. (2004). Regulation of mammary gland branching morphogenesis by the extracellular matrix and its remodeling enzymes. Breast Cancer Research, 6(1), 1–11. PubMedCAS Google Scholar
Blum, J. L., & Wicha, M. S. (1988). Role of the cytoskeleton in laminin induced mammary gene expression. Journal of Cellular Physiology, 135(1), 13–22, Apr. PubMedCAS Google Scholar
Li ML, Aggeler, J., Farson, D. A., Hatier, C., Hassell, J., & Bissell, M. J. (1987). Influence of a reconstituted basement membrane and its components on casein gene expression and secretion in mouse mammary epithelial cells. Proceedings of the National Academy of Sciences of the United States of America, 84(1), 136–140, Jan. PubMedCAS Google Scholar
Deugnier, M. A., Faraldo, M. M., Rousselle, P., Thiery, J. P., & Glukhova, M. A. (1999). Cell–extracellular matrix interactions and EGF are important regulators of the basal mammary epithelial cell phenotype. Journal of Cell Science, 112(Pt 7), 1035–1044, Apr. PubMedCAS Google Scholar
Streuli, C. H., Bailey, N., & Bissell, M. J. (1991). Control of mammary epithelial differentiation: basement membrane induces tissue-specific gene expression in the absence of cell-cell interaction and morphological polarity. Journal of Cell Biology, 115(5), 1383–1395, Dec. PubMedCAS Google Scholar
Kleinman, H. K., McGarvey, M. L., Hassell, J. R., et al. (1986). Basement membrane complexes with biological activity. Biochemistry, 25(2), 312–318, Jan 28. PubMedCAS Google Scholar
Farrelly, N., Lee, Y. J., Oliver, J., Dive, C., & Streuli, C. H. (1999). Extracellular matrix regulates apoptosis in mammary epithelium through a control on insulin signaling. Journal of Cell Biology, 144(6), 1337-1348, Mar 22. PubMedCAS Google Scholar
Streuli, C. H., & Gilmore, A. P. (1999). Adhesion-mediated signaling in the regulation of mammary epithelial cell survival. Journal of Mammary Gland Biology and Neoplasia, 4(2), 183–191, Apr. PubMedCAS Google Scholar
Pullan, S., Wilson, J., Metcalfe, A., et al. (1996). Requirement of basement membrane for the suppression of programmed cell death in mammary epithelium. Journal of Cell Science, 109(Pt 3), 631–642, Mar. PubMedCAS Google Scholar
Cary, L. A., Han, D. C., & Guan, J. L. (1999). Integrin-mediated signal transduction pathways. Histology and Histopathology, 14(3), 1001–1009, Jul. PubMedCAS Google Scholar
Hynes, R. O. (2002). Integrins: Bidirectional, allosteric signaling machines. Cell, 110(6), 673–687, Sep 20. PubMedCAS Google Scholar
Pozzi, A., & Zent, R. (2003). Integrins: Sensors of extracellular matrix and modulators of cell function. Nephron Exp Nephrology, 94(3), e77–e84. CAS Google Scholar
Schatzmann, F., Marlow, R., & Streuli, C. H. (2003). Integrin signaling and mammary cell function. Journal of Mammary Gland Biology and Neoplasia, 8(4), 395–408, Oct. PubMed Google Scholar
Taddei, I., Faraldo, M. M., Teuliere, J., Deugnier, M. A., Thiery, J. P., & Glukhova, M. A. (2003). ntegrins in mammary gland development and differentiation of mammary epithelium. Journal of Mammary Gland Biology and Neoplasia, 8(4), 383–394, Oct. PubMed Google Scholar
de la Cruz, L., Steffgen, K., Martin, A., McGee, C., & Hathaway, H. (2004). Apoptosis and involution in the mammary gland are altered in mice lacking a novel receptor, beta1,4-Galactosyltransferase I. Developments in Biologicals, 272(2), 286–309, Aug 15. ArticleCAS Google Scholar
Hathaway, H. J. (2003). Cell surface beta1,4-galactosyltransferase function in mammary gland morphogenesis: Insights from transgenic and knockout mouse models. Journal of Mammary Gland Biology and Neoplasia, 8(4), 421–433, Oct. PubMed Google Scholar
Hathaway, H. J., & Shur, B. D. (1996). Mammary gland morphogenesis is inhibited in transgenic mice that overexpress cell surface beta1,4-galactosyltransferase. Development, 122(9), 2859–2872, Sep. PubMedCAS Google Scholar
Barcellos-Hoff, M. H. (1992). Mammary epithelial reorganization on extracellular matrix is mediated by cell surface galactosyltransferase. Experimental Cell Research, 201(1), 225–234, Jul. PubMedCAS Google Scholar
Li N, Zhang, Y., Naylor, M. J., et al. (2005). Beta1 integrins regulate mammary gland proliferation and maintain the integrity of mammary alveoli. EMBO Journal, 24(11), 1942–1953, Jun 1. PubMedCAS Google Scholar
Faraldo, M. M., Deugnier, M. A., Lukashev, M., Thiery, J. P., & Glukhova, M. A. (1998). Perturbation of beta1-integrin function alters the development of murine mammary gland. EMBO Journal, 17(8), 2139–2147, Apr 15. PubMedCAS Google Scholar
Wang, F., Hansen, R. K., Radisky, D., et al. (2002). Phenotypic reversion or death of cancer cells by altering signaling pathways in three-dimensional contexts. Journal of the National Cancer Institute, 94(19), 1494–1503, Oct 2. PubMedCAS Google Scholar
Weaver, V. M., Petersen, O. W., Wang, F., et al. (1997). Reversion of the malignant phenotype of human breast cells in three-dimensional culture and in vivo by integrin blocking antibodies. Journal of Cell Biology, 137(1), 231–245, Apr 7. PubMedCAS Google Scholar
Pechoux, C., Gudjonsson, T., Ronnov-Jessen, L., Bissell, M. J., & Petersen, O. W. (1999). Human mammary luminal epithelial cells contain progenitors to myoepithelial cells. Developments in Biologicals, 206(1), 88–99, Feb 1. ArticleCAS Google Scholar
Emerman, J. T., & Vogl, A. W. (1986). Cell size and shape changes in the myoepithelium of the mammary gland during differentiation. Anatomical Record, 216(3), 405–415, Nov. PubMedCAS Google Scholar
Streuli, C. H. (1993). Extracellular matrix and gene expression in mammary epithelium. Seminars in Cell Biology, 4(3), 203–212, Jun. PubMedCAS Google Scholar
Goodell, M. A., Brose, K., Paradis, G., Conner, A. S., & Mulligan, R. C. (1996). Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. Journal of Experimental Medicine, 183(4), 1797–1806, Apr 1. PubMedCAS Google Scholar
Zhou, S., Schuetz, J. D., Bunting, K. D., et al. (2001). The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat. Med., 7(9), 1028–1034, Sep. PubMedCAS Google Scholar
Goodell, M. A., Rosenzweig, M., Kim, H., et al. (1997). Dye efflux studies suggest that hematopoietic stem cells expressing low or undetectable levels of CD34 antigen exist in multiple species. Nat. Med., 3(12), 1337–1345, Dec. PubMedCAS Google Scholar
Hulspas, R., & Quesenberry, P. J. (2000). Characterization of neurosphere cell phenotypes by flow cytometry. Cytometry, 40(3), 245–250, Jul 1. PubMedCAS Google Scholar
Alvi, A. J., Clayton, H., Joshi, C., et al. (2003). Functional and molecular characterisation of mammary side population cells. Breast Cancer Research, 5(1), R1–R8. PubMed Google Scholar
Smalley, M. J., Titley, I., & Ashworth, A. (2005). An improved definition of mouse mammary epithelial side population cells. Cytotherapy, 7(6), 497–508. PubMedCAS Google Scholar
Jonker, J. W., Merino, G., Musters, S., et al. (2005). The breast cancer resistance protein BCRP (ABCG2) concentrates drugs and carcinogenic xenotoxins into milk. Nat. Med., 11(2), 127–129, Feb. PubMedCAS Google Scholar
Ee P. L., Kamalakaran, S., Tonetti, D., He X, Ross, D. D., & Beck, W. T. (2004). Identification of a novel estrogen response element in the breast cancer resistance protein (ABCG2) gene. Cancer Research, 64(4), 1247–1251, Feb 15. PubMedCAS Google Scholar
Petersen, T. W., Ibrahim, S. F., Diercks, A. H., & van den Engh, G. (2004). Chromatic shifts in the fluorescence emitted by murine thymocytes stained with Hoechst 33342. Cytometry, 60A(2), 173–181, Aug. Google Scholar
Pirruccello, S. J., & LeBien, T. W. (1986). The human B cell-associated antigen CD24 is a single chain sialoglycoprotein. Journal of Immunology, 136(10), 3779–3784, May 15. CAS Google Scholar
Akashi, T., Shirasawa, T., & Hirokawa, K. (1994). Gene expression of CD24 core polypeptide molecule in normal rat tissues and human tumor cell lines. Virchows Archiv, 425(4), 399–406. PubMedCAS Google Scholar
Jackson, D., Waibel, R., Weber, E., Bell, J., & Stahel, R. A. (1992). CD24, a signal-transducing molecule expressed on human B cells, is a major surface antigen on small cell lung carcinomas. Cancer Research, 52(19), 5264–5270, Oct 1. PubMedCAS Google Scholar
Kristiansen, G., Denkert, C., Schluns, K., Dahl, E., Pilarsky, C., & Hauptmann, S. (2002). CD24 is expressed in ovarian cancer and is a new independent prognostic marker of patient survival. American Journal of Pathology, 161(4), 1215–1221, Oct. PubMedCAS Google Scholar
Kristiansen, G., Pilarsky, C., Pervan, J., et al. (2004). CD24 expression is a significant predictor of PSA relapse and poor prognosis in low grade or organ confined prostate cancer. Prostate, 58(2), 183–192, Feb 1. PubMed Google Scholar
Kristiansen, G., Winzer, K. J., Mayordomo, E., et al. (2003). CD24 expression is a new prognostic marker in breast cancer. Clinical Cancer Research, 9(13), 4906–4913, Oct 15. PubMedCAS Google Scholar
Aigner, S., Sthoeger, Z. M., Fogel, M., et al. (1997). CD24, a mucin-type glycoprotein, is a ligand for P-selectin on human tumor cells. Blood, 89(9), 3385–3395, May 1. PubMedCAS Google Scholar
Sammar, M., Aigner, S., Hubbe, M., et al. (1994). Heat-stable antigen (CD24) as ligand for mouse P-selectin. International Immunology, 6(7), 1027–1036, Jul. PubMedCAS Google Scholar
Baumann, P., Cremers, N., Kroese, F., et al. (2005). CD24 expression causes the acquisition of multiple cellular properties associated with tumor growth and metastasis. Cancer Research, 65(23), 10783–10793, Dec 1. PubMedCAS Google Scholar
Kristiansen, G., Schluns, K., Yongwei, Y., Denkert, C., Dietel, M., & Petersen, I. (2003). CD24 is an independent prognostic marker of survival in nonsmall cell lung cancer patients. British Journal of Cancer, 88(2), 231–236, Jan 27. PubMedCAS Google Scholar
Anderson, E., Clarke, R. B., & Howell, A. (1998). Estrogen responsiveness and control of normal human breast proliferation. Journal of Mammary Gland Biology and Neoplasia, 3(1), 23–35, Jan. PubMedCAS Google Scholar
Bocchinfuso, W. P., & Korach, K. S. (1997). Mammary gland development and tumorigenesis in estrogen receptor knockout mice. Journal of Mammary Gland Biology and Neoplasia, 2(4), 323–334, Oct. PubMedCAS Google Scholar
Yager, J. D., & Davidson, N. E. (2006).Estrogen carcinogenesis in breast cancer. New England Journal of Medicine, 354(3), 270–282, Jan 19. PubMedCAS Google Scholar
Cheng, G., Weihua, Z., Warner, M., & Gustafsson, J. A. (2004). Estrogen receptors ER alpha and ER beta in proliferation in the rodent mammary gland. Proceedings of the National Academy of Sciences of the United States of America, 101(11), 3739–3746, Mar 16. PubMedCAS Google Scholar
Clarke, R. B., Spence, K., Anderson, E., Howell, A., Okano, H., & Potten, C. S. (2005). A putative human breast stem cell population is enriched for steroid receptor-positive cells. Developments in Biologicals, 277(2), 443–456, Jan 15. CAS Google Scholar
Booth, B. W., & Smith, G. H. (2006). Estrogen receptor-alpha and progesterone receptor are expressed in label-retaining mammary epithelial cells that divide asymmetrically and retain their template DNA strands. Breast Cancer Research, 8(4), R49, Aug 1. PubMed Google Scholar
Sotgia, F., Rui, H., Bonuccelli, G., Mercier, I., Pestell, R. G., & Lisanti, M. P. (2006). Caveolin-1, mammary stem cells, and estrogen-dependent breast cancers. Cancer Research, 66(22), 10647–10651, Nov 15. PubMedCAS Google Scholar
Mallepell, S., Krust, A., Chambon, P., & Brisken, C. (2006). Paracrine signaling through the epithelial estrogen receptor alpha is required for proliferation and morphogenesis in the mammary gland. Proceedings of the National Academy of Sciences of the United States of America, 103(7), 2196–2201, Feb 14. PubMedCAS Google Scholar
Sleeman, K. E., Kendrick, H., Robertson, D., Isacke, C. M., & Ashworth, A., Smalley, M. J. (2007). Dissociation of estrogen receptor expression and in vivo stem cell activity in the mammary gland. Journal of Cell Biology 176(1), 19–26. Google Scholar