Prospective Isolation and Functional Analysis of Stem and Differentiated Cells from the Mouse Mammary Gland (original) (raw)

References

  1. Reya, T., Morrison, S. J., Clarke, M. F., & Weissman, I. L. (2001). Stem cells, cancer, and cancer stem cells. Nature, 414(6859), 105–111, Nov 1.
    PubMed CAS Google Scholar
  2. Sell, S. (2004). Stem cell origin of cancer and differentiation therapy. Critical Reviews in Oncology/Hematology, 51(1), 1–28, Jul.
    PubMed Google Scholar
  3. Singh, S. K., Clarke, I. D., Hide, T., & Dirks, P. B. (2004). Cancer stem cells in nervous system tumors. Oncogene, 23(43), 7267–7273, Sep 20.
    PubMed CAS Google Scholar
  4. Wang, J. C., & Dick, J. E. (2005). Cancer stem cells: Lessons from leukemia. Trends in Cell Biology, 15(9), 494–501, Sep.
    PubMed CAS Google Scholar
  5. Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J., & Clarke, M. F. (2003). Prospective identification of tumorigenic breast cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 100(7), 3983–3988, Apr 1.
    PubMed CAS Google Scholar
  6. Bonnet, D., & Dick, J. E. (1997). Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat. Med., 3(7), 730–737, Jul.
    PubMed CAS Google Scholar
  7. Galli, R., Binda, E., Orfanelli, U., et al. (2004). Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Research, 64(19), 7011–7021, Oct 1.
    PubMed CAS Google Scholar
  8. Lapidot, T., Sirard, C., Vormoor, J., et al. (1994). A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature, 367(6464), 645–648, Feb 17.
    PubMed CAS Google Scholar
  9. Singh, S. K., Clarke, I. D., Terasaki, M., et al. (2003). Identification of a cancer stem cell in human brain tumors. Cancer Research, 63(18), 5821–5828, Sep 15.
    PubMed CAS Google Scholar
  10. Singh, S. K., Hawkins, C., Clarke, I. D., et al. (2004). Identification of human brain tumour initiating cells. Nature, 432(7015), 396–401, Nov 18.
    PubMed CAS Google Scholar
  11. Alonso, L., & Fuchs, E. (2003). Stem cells in the skin: Waste not, Wnt not. Genes & Development, 17(10), 1189–1200, May 15.
    CAS Google Scholar
  12. Galli, R., Gritti, A., Bonfanti, L., & Vescovi, A. L. (2003). Neural stem cells: An overview. Circulation Research, 92(6), 598–608, Apr 4.
    PubMed CAS Google Scholar
  13. Potten, C. S., & Loeffler, M. (1990). Stem cells: Attributes, cycles, spirals, pitfalls and uncertainties. Lessons for and from the crypt. Development, 110(4), 1001–1020, Dec.
    PubMed CAS Google Scholar
  14. Seaberg, R. M., & van der Kooy, D. (2003). Stem and progenitor cells: The premature desertion of rigorous definitions. Trends in Neurosciences, 26(3), 125–131, Mar.
    PubMed CAS Google Scholar
  15. Smith, C. (2003). Hematopoietic stem cells and hematopoiesis. Cancer Control, 10(1), 9–16, Jan–Feb.
    PubMed Google Scholar
  16. Wicha, M. S., Liu, S., & Dontu, G. (2006). Cancer stem cells: An old idea—A paradigm shift. Cancer Research, 66(4), 1883–1890; discussion 1895–1886, Feb 15.
    PubMed CAS Google Scholar
  17. Dontu, G., Abdallah, W. M., Foley, J. M., et al. (2003). In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes & Development, 17(10), 1253–1270, May 15.
    CAS Google Scholar
  18. Reynolds, B. A., & Weiss, S. (1996). Clonal and population analyses demonstrate that an EGF-responsive mammalian embryonic CNS precursor is a stem cell. Developments in Biologicals, 175(1), 1–13, Apr 10.
    CAS Google Scholar
  19. Weiss, S., Reynolds, B. A., Vescovi, A. L., Morshead, C., Craig, C. G., & van der Kooy, D. (1996). Is there a neural stem cell in the mammalian forebrain? Trends in Neurosciences, 19(9), 387–393, Sep.
    PubMed CAS Google Scholar
  20. Miller, S. J., Lavker, R. M., & Sun, T. T. (2005). Interpreting epithelial cancer biology in the context of stem cells: Tumor properties and therapeutic implications. Biochimica et Biophysica Acta, 1756(1), 25–52, Sep 25.
    PubMed CAS Google Scholar
  21. Liu, S., Dontu, G., & Wicha, M. S. (2005). Mammary stem cells, self-renewal pathways, and carcinogenesis. Breast Cancer Research, 7(3), 86–95.
    PubMed CAS Google Scholar
  22. Salsbury, A. J. (1975). The significance of the circulating cancer cell. Cancer Treatment Reviews, 2(1), 55–72, Mar.
    PubMed CAS Google Scholar
  23. DeOme, K. B., Faulkin Jr., L. J., Bern, H. A., & Blair, P. B. (1959). Development of mammary tumors from hyperplastic alveolar nodules transplanted into gland-free mammary fat pads of female C3H mice. Cancer Research, 19(5), 515–520, Jun.
    PubMed CAS Google Scholar
  24. Medina, D. (1996). The mammary gland: A unique organ for the study of development and tumorigenesis. Journal of Mammary Gland Biology and Neoplasia, 1(1), 5–19, Jan.
    PubMed CAS Google Scholar
  25. Kordon, E. C., & Smith, G. H. (1998).An entire functional mammary gland may comprise the progeny from a single cell. Development, 125(10), 1921–1930, May.
    PubMed CAS Google Scholar
  26. Smith, G. H. (1996). Experimental mammary epithelial morphogenesis in an in vivo model: Evidence for distinct cellular progenitors of the ductal and lobular phenotype. Breast Cancer Research and Treatment, 39(1), 21–31.
    PubMed CAS Google Scholar
  27. Shackleton, M., Vaillant, F., Simpson, K. J., et al. (2006). Generation of a functional mammary gland from a single stem cell. Nature, 439(7072), 84–88, Jan 5.
    PubMed CAS Google Scholar
  28. Stingl, J., Eirew, P., Ricketson, I., et al. (2006). Purification and unique properties of mammary epithelial stem cells. Nature, 439(7079), 993–997, Feb 23.
    PubMed CAS Google Scholar
  29. Welm, B. E., Tepera, S. B., Venezia, T., Graubert, T. A., Rosen, J. M., & Goodell, M. A. (2002). Sca-1(pos) cells in the mouse mammary gland represent an enriched progenitor cell population. Developments in Biologicals, 245(1), 42–56, May 1.
    CAS Google Scholar
  30. Kenney, N. J., Smith, G. H., Lawrence, E., Barrett, J. C., & Salomon, D. S. (2001).Identification of stem cell units in the terminal end bud and duct of the mouse mammary gland. Journal of Biomedicine and Biotechnology, 1(3), 133–143.
    PubMed CAS Google Scholar
  31. Richert, M. M., Schwertfeger, K. L., Ryder, J. W., & Anderson, S. M. (2000). An atlas of mouse mammary gland development. Journal of Mammary Gland Biology and Neoplasia, 5(2), 227–241, Apr.
    PubMed CAS Google Scholar
  32. Bartek, J., Durban, E. M., Hallowes, R. C., & Taylor-Papadimitriou, J. A (1985). subclass of luminal epithelial cells in the human mammary gland, defined by antibodies to cytokeratins. Journal of Cell Science, 75, 17–33, Apr.
    PubMed CAS Google Scholar
  33. Smalley, M., & Ashworth, A. (2003). Stem cells and breast cancer: A field in transit. Nature Reviews. Cancer, 3(11), 832–844, Nov.
    PubMed CAS Google Scholar
  34. Williams, J. M., & Daniel, C. W. (1983). Mammary ductal elongation: Differentiation of myoepithelium and basal lamina during branching morphogenesis. Developments in Biologicals, 97(2), 274–290, Jun.
    CAS Google Scholar
  35. Srinivasan, K., Strickland, P., Valdes, A., Shin, G. C., & Hinck, L. (2003). Netrin-1/neogenin interaction stabilizes multipotent progenitor cap cells during mammary gland morphogenesis. Developments in Cell, 4(3), 371–382, Mar.
    CAS Google Scholar
  36. Sapino, A., Macri, L., Gugliotta, P., et al. (1993). mmunophenotypic properties and estrogen dependency of budding cell structures in the developing mouse mammary gland. Differentiation, 55(1), 13–18, Dec.
    PubMed CAS Google Scholar
  37. Chepko, G., & Smith, G. H. (1997). Three division-competent, structurally-distinct cell populations contribute to murine mammary epithelial renewal. Tissue & Cell, 29(2), 239–253, Apr.
    CAS Google Scholar
  38. Smalley, M. J. (1995). Clonal characterisation of mouse mammary luminal epithelial and myoepithelial cells. University of London.
  39. Smalley, M. J., Titley, J., & O'Hare, M. J. (1998). Clonal characterization of mouse mammary luminal epithelial and myoepithelial cells separated by fluorescence-activated cell sorting. In vitro Cellular & Developmental Biology. Animal, 34(9), 711–721, Oct.
    CAS Google Scholar
  40. Smalley, M. J., Titley, J., Paterson, H., Perusinghe, N., Clarke, C., & O'Hare, M. J. (1999). Differentiation of separated mouse mammary luminal epithelial and myoepithelial cells cultured on EHS matrix analyzed by indirect immunofluorescence of cytoskeletal antigens. Journal of Histochemistry and Cytochemistry, 47(12), 1513–1524, Dec.
    PubMed CAS Google Scholar
  41. O'Hare, M. J., Ormerod, M. G., Monaghan, P., Lane, E. B., & Gusterson, B. A. (1991). Characterization in vitro of luminal and myoepithelial cells isolated from the human mammary gland by cell sorting. Differentiation, 46(3), 209–221, Apr.
    PubMed Google Scholar
  42. Dundas, S. R., Ormerod, M. G., Gusterson, B. A., & O’Hare, M. J. (1991). Characterization of luminal and basal cells flow-sorted from the adult rat mammary parenchyma. Journal of Cell Science, 100(Pt 3), 459–471, Nov.
    PubMed Google Scholar
  43. Naylor, S., Smalley, M. J., Robertson, D., Gusterson, B. A., Edwards, P. A., & Dale, T. C. (2000). Retroviral expression of Wnt-1 and Wnt-7b produces different effects in mouse mammary epithelium. Journal of Cell Science, 113(Pt 12), 2129–2138, Jun.
    PubMed CAS Google Scholar
  44. Sleeman, K. E., Kendrick, H., Ashworth, A., Isacke, C.M., Smalley, M. J. (2006). CD24 staining of mouse mammary gland cells defines luminal epithelial, myoepithelial/basal and non-epithelial cells. Breast Cancer Research, 8(1), R7.
    Google Scholar
  45. Sonnenberg, A., Daams, H., Van der Valk, M. A., Hilkens, J., & Hilgers, J. (1986). Development of mouse mammary gland: Identification of stages in differentiation of luminal and myoepithelial cells using monoclonal antibodies and polyvalent antiserum against keratin. Journal of Histochemistry and Cytochemistry, 34(8), 1037–1046, Aug.
    PubMed CAS Google Scholar
  46. Das, N. K., Hosick, H. L., & Nandi, S. (1974). Influence of seeding density on multicellular organization and nuclear events in cultures of normal and neoplastic mouse mammary epithelium. Journal of the National Cancer Institute, 52(3), 849–861, Mar.
    PubMed CAS Google Scholar
  47. Singh, S., & Gupta, P. D. (1994). Tampering with cytokeratin expression results in cell dysfunction. Epithelial Cell Biology, 3(2), 79–83.
    PubMed CAS Google Scholar
  48. Vassar, R., Coulombe, P. A., Degenstein, L., Albers, K., & Fuchs, E. (1991). Mutant keratin expression in transgenic mice causes marked abnormalities resembling a human genetic skin disease. Cell, 64(2), 365–380, Jan 25.
    PubMed CAS Google Scholar
  49. Kumemura, H., Harada, M., Omary, M. B., et al. (2004). Aggregation and loss of cytokeratin filament networks inhibit golgi organization in liver-derived epithelial cell lines. Cell Motility and the Cytoskeleton, 57(1), 37–52, Jan.
    PubMed CAS Google Scholar
  50. Parry, G., Beck, J. C., Moss, L., Bartley, J., & Ojakian, G. K. (1990). Determination of apical membrane polarity in mammary epithelial cell cultures: the role of cell–cell, cell–substratum, and membrane–cytoskeleton interactions. Experimental Cell Research, 188(2), 302–311, Jun.
    PubMed CAS Google Scholar
  51. Taylor-Papadimitriou, J., & Lane, E. B. (1987). Keratin expression in the mammary gland. In C. M. Neville, & C. W. Daniel (Eds.), The mammary gland: Development, regulation and function (pp. 181–215). New York: Plenum.
    Google Scholar
  52. Fata, J. E., Werb, Z., & Bissell, M. J. (2004). Regulation of mammary gland branching morphogenesis by the extracellular matrix and its remodeling enzymes. Breast Cancer Research, 6(1), 1–11.
    PubMed CAS Google Scholar
  53. Blum, J. L., & Wicha, M. S. (1988). Role of the cytoskeleton in laminin induced mammary gene expression. Journal of Cellular Physiology, 135(1), 13–22, Apr.
    PubMed CAS Google Scholar
  54. Li ML, Aggeler, J., Farson, D. A., Hatier, C., Hassell, J., & Bissell, M. J. (1987). Influence of a reconstituted basement membrane and its components on casein gene expression and secretion in mouse mammary epithelial cells. Proceedings of the National Academy of Sciences of the United States of America, 84(1), 136–140, Jan.
    PubMed CAS Google Scholar
  55. Deugnier, M. A., Faraldo, M. M., Rousselle, P., Thiery, J. P., & Glukhova, M. A. (1999). Cell–extracellular matrix interactions and EGF are important regulators of the basal mammary epithelial cell phenotype. Journal of Cell Science, 112(Pt 7), 1035–1044, Apr.
    PubMed CAS Google Scholar
  56. Streuli, C. H., Bailey, N., & Bissell, M. J. (1991). Control of mammary epithelial differentiation: basement membrane induces tissue-specific gene expression in the absence of cell-cell interaction and morphological polarity. Journal of Cell Biology, 115(5), 1383–1395, Dec.
    PubMed CAS Google Scholar
  57. Kleinman, H. K., McGarvey, M. L., Hassell, J. R., et al. (1986). Basement membrane complexes with biological activity. Biochemistry, 25(2), 312–318, Jan 28.
    PubMed CAS Google Scholar
  58. Farrelly, N., Lee, Y. J., Oliver, J., Dive, C., & Streuli, C. H. (1999). Extracellular matrix regulates apoptosis in mammary epithelium through a control on insulin signaling. Journal of Cell Biology, 144(6), 1337-1348, Mar 22.
    PubMed CAS Google Scholar
  59. Streuli, C. H., & Gilmore, A. P. (1999). Adhesion-mediated signaling in the regulation of mammary epithelial cell survival. Journal of Mammary Gland Biology and Neoplasia, 4(2), 183–191, Apr.
    PubMed CAS Google Scholar
  60. Pullan, S., Wilson, J., Metcalfe, A., et al. (1996). Requirement of basement membrane for the suppression of programmed cell death in mammary epithelium. Journal of Cell Science, 109(Pt 3), 631–642, Mar.
    PubMed CAS Google Scholar
  61. Cary, L. A., Han, D. C., & Guan, J. L. (1999). Integrin-mediated signal transduction pathways. Histology and Histopathology, 14(3), 1001–1009, Jul.
    PubMed CAS Google Scholar
  62. Hynes, R. O. (2002). Integrins: Bidirectional, allosteric signaling machines. Cell, 110(6), 673–687, Sep 20.
    PubMed CAS Google Scholar
  63. Pozzi, A., & Zent, R. (2003). Integrins: Sensors of extracellular matrix and modulators of cell function. Nephron Exp Nephrology, 94(3), e77–e84.
    CAS Google Scholar
  64. Schatzmann, F., Marlow, R., & Streuli, C. H. (2003). Integrin signaling and mammary cell function. Journal of Mammary Gland Biology and Neoplasia, 8(4), 395–408, Oct.
    PubMed Google Scholar
  65. Taddei, I., Faraldo, M. M., Teuliere, J., Deugnier, M. A., Thiery, J. P., & Glukhova, M. A. (2003). ntegrins in mammary gland development and differentiation of mammary epithelium. Journal of Mammary Gland Biology and Neoplasia, 8(4), 383–394, Oct.
    PubMed Google Scholar
  66. de la Cruz, L., Steffgen, K., Martin, A., McGee, C., & Hathaway, H. (2004). Apoptosis and involution in the mammary gland are altered in mice lacking a novel receptor, beta1,4-Galactosyltransferase I. Developments in Biologicals, 272(2), 286–309, Aug 15.
    Article CAS Google Scholar
  67. Hathaway, H. J. (2003). Cell surface beta1,4-galactosyltransferase function in mammary gland morphogenesis: Insights from transgenic and knockout mouse models. Journal of Mammary Gland Biology and Neoplasia, 8(4), 421–433, Oct.
    PubMed Google Scholar
  68. Hathaway, H. J., & Shur, B. D. (1996). Mammary gland morphogenesis is inhibited in transgenic mice that overexpress cell surface beta1,4-galactosyltransferase. Development, 122(9), 2859–2872, Sep.
    PubMed CAS Google Scholar
  69. Barcellos-Hoff, M. H. (1992). Mammary epithelial reorganization on extracellular matrix is mediated by cell surface galactosyltransferase. Experimental Cell Research, 201(1), 225–234, Jul.
    PubMed CAS Google Scholar
  70. Li N, Zhang, Y., Naylor, M. J., et al. (2005). Beta1 integrins regulate mammary gland proliferation and maintain the integrity of mammary alveoli. EMBO Journal, 24(11), 1942–1953, Jun 1.
    PubMed CAS Google Scholar
  71. Faraldo, M. M., Deugnier, M. A., Lukashev, M., Thiery, J. P., & Glukhova, M. A. (1998). Perturbation of beta1-integrin function alters the development of murine mammary gland. EMBO Journal, 17(8), 2139–2147, Apr 15.
    PubMed CAS Google Scholar
  72. Wang, F., Hansen, R. K., Radisky, D., et al. (2002). Phenotypic reversion or death of cancer cells by altering signaling pathways in three-dimensional contexts. Journal of the National Cancer Institute, 94(19), 1494–1503, Oct 2.
    PubMed CAS Google Scholar
  73. Weaver, V. M., Petersen, O. W., Wang, F., et al. (1997). Reversion of the malignant phenotype of human breast cells in three-dimensional culture and in vivo by integrin blocking antibodies. Journal of Cell Biology, 137(1), 231–245, Apr 7.
    PubMed CAS Google Scholar
  74. Pechoux, C., Gudjonsson, T., Ronnov-Jessen, L., Bissell, M. J., & Petersen, O. W. (1999). Human mammary luminal epithelial cells contain progenitors to myoepithelial cells. Developments in Biologicals, 206(1), 88–99, Feb 1.
    Article CAS Google Scholar
  75. Emerman, J. T., & Vogl, A. W. (1986). Cell size and shape changes in the myoepithelium of the mammary gland during differentiation. Anatomical Record, 216(3), 405–415, Nov.
    PubMed CAS Google Scholar
  76. Streuli, C. H. (1993). Extracellular matrix and gene expression in mammary epithelium. Seminars in Cell Biology, 4(3), 203–212, Jun.
    PubMed CAS Google Scholar
  77. Goodell, M. A., Brose, K., Paradis, G., Conner, A. S., & Mulligan, R. C. (1996). Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. Journal of Experimental Medicine, 183(4), 1797–1806, Apr 1.
    PubMed CAS Google Scholar
  78. Zhou, S., Schuetz, J. D., Bunting, K. D., et al. (2001). The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat. Med., 7(9), 1028–1034, Sep.
    PubMed CAS Google Scholar
  79. Goodell, M. A., Rosenzweig, M., Kim, H., et al. (1997). Dye efflux studies suggest that hematopoietic stem cells expressing low or undetectable levels of CD34 antigen exist in multiple species. Nat. Med., 3(12), 1337–1345, Dec.
    PubMed CAS Google Scholar
  80. Hulspas, R., & Quesenberry, P. J. (2000). Characterization of neurosphere cell phenotypes by flow cytometry. Cytometry, 40(3), 245–250, Jul 1.
    PubMed CAS Google Scholar
  81. Alvi, A. J., Clayton, H., Joshi, C., et al. (2003). Functional and molecular characterisation of mammary side population cells. Breast Cancer Research, 5(1), R1–R8.
    PubMed Google Scholar
  82. Smalley, M. J., Titley, I., & Ashworth, A. (2005). An improved definition of mouse mammary epithelial side population cells. Cytotherapy, 7(6), 497–508.
    PubMed CAS Google Scholar
  83. Jonker, J. W., Merino, G., Musters, S., et al. (2005). The breast cancer resistance protein BCRP (ABCG2) concentrates drugs and carcinogenic xenotoxins into milk. Nat. Med., 11(2), 127–129, Feb.
    PubMed CAS Google Scholar
  84. Ee P. L., Kamalakaran, S., Tonetti, D., He X, Ross, D. D., & Beck, W. T. (2004). Identification of a novel estrogen response element in the breast cancer resistance protein (ABCG2) gene. Cancer Research, 64(4), 1247–1251, Feb 15.
    PubMed CAS Google Scholar
  85. Petersen, T. W., Ibrahim, S. F., Diercks, A. H., & van den Engh, G. (2004). Chromatic shifts in the fluorescence emitted by murine thymocytes stained with Hoechst 33342. Cytometry, 60A(2), 173–181, Aug.
    Google Scholar
  86. Pirruccello, S. J., & LeBien, T. W. (1986). The human B cell-associated antigen CD24 is a single chain sialoglycoprotein. Journal of Immunology, 136(10), 3779–3784, May 15.
    CAS Google Scholar
  87. Akashi, T., Shirasawa, T., & Hirokawa, K. (1994). Gene expression of CD24 core polypeptide molecule in normal rat tissues and human tumor cell lines. Virchows Archiv, 425(4), 399–406.
    PubMed CAS Google Scholar
  88. Jackson, D., Waibel, R., Weber, E., Bell, J., & Stahel, R. A. (1992). CD24, a signal-transducing molecule expressed on human B cells, is a major surface antigen on small cell lung carcinomas. Cancer Research, 52(19), 5264–5270, Oct 1.
    PubMed CAS Google Scholar
  89. Kristiansen, G., Denkert, C., Schluns, K., Dahl, E., Pilarsky, C., & Hauptmann, S. (2002). CD24 is expressed in ovarian cancer and is a new independent prognostic marker of patient survival. American Journal of Pathology, 161(4), 1215–1221, Oct.
    PubMed CAS Google Scholar
  90. Kristiansen, G., Pilarsky, C., Pervan, J., et al. (2004). CD24 expression is a significant predictor of PSA relapse and poor prognosis in low grade or organ confined prostate cancer. Prostate, 58(2), 183–192, Feb 1.
    PubMed Google Scholar
  91. Kristiansen, G., Winzer, K. J., Mayordomo, E., et al. (2003). CD24 expression is a new prognostic marker in breast cancer. Clinical Cancer Research, 9(13), 4906–4913, Oct 15.
    PubMed CAS Google Scholar
  92. Aigner, S., Sthoeger, Z. M., Fogel, M., et al. (1997). CD24, a mucin-type glycoprotein, is a ligand for P-selectin on human tumor cells. Blood, 89(9), 3385–3395, May 1.
    PubMed CAS Google Scholar
  93. Sammar, M., Aigner, S., Hubbe, M., et al. (1994). Heat-stable antigen (CD24) as ligand for mouse P-selectin. International Immunology, 6(7), 1027–1036, Jul.
    PubMed CAS Google Scholar
  94. Baumann, P., Cremers, N., Kroese, F., et al. (2005). CD24 expression causes the acquisition of multiple cellular properties associated with tumor growth and metastasis. Cancer Research, 65(23), 10783–10793, Dec 1.
    PubMed CAS Google Scholar
  95. Kristiansen, G., Schluns, K., Yongwei, Y., Denkert, C., Dietel, M., & Petersen, I. (2003). CD24 is an independent prognostic marker of survival in nonsmall cell lung cancer patients. British Journal of Cancer, 88(2), 231–236, Jan 27.
    PubMed CAS Google Scholar
  96. Anderson, E., Clarke, R. B., & Howell, A. (1998). Estrogen responsiveness and control of normal human breast proliferation. Journal of Mammary Gland Biology and Neoplasia, 3(1), 23–35, Jan.
    PubMed CAS Google Scholar
  97. Bocchinfuso, W. P., & Korach, K. S. (1997). Mammary gland development and tumorigenesis in estrogen receptor knockout mice. Journal of Mammary Gland Biology and Neoplasia, 2(4), 323–334, Oct.
    PubMed CAS Google Scholar
  98. Yager, J. D., & Davidson, N. E. (2006).Estrogen carcinogenesis in breast cancer. New England Journal of Medicine, 354(3), 270–282, Jan 19.
    PubMed CAS Google Scholar
  99. Cheng, G., Weihua, Z., Warner, M., & Gustafsson, J. A. (2004). Estrogen receptors ER alpha and ER beta in proliferation in the rodent mammary gland. Proceedings of the National Academy of Sciences of the United States of America, 101(11), 3739–3746, Mar 16.
    PubMed CAS Google Scholar
  100. Clarke, R. B., Spence, K., Anderson, E., Howell, A., Okano, H., & Potten, C. S. (2005). A putative human breast stem cell population is enriched for steroid receptor-positive cells. Developments in Biologicals, 277(2), 443–456, Jan 15.
    CAS Google Scholar
  101. Booth, B. W., & Smith, G. H. (2006). Estrogen receptor-alpha and progesterone receptor are expressed in label-retaining mammary epithelial cells that divide asymmetrically and retain their template DNA strands. Breast Cancer Research, 8(4), R49, Aug 1.
    PubMed Google Scholar
  102. Sotgia, F., Rui, H., Bonuccelli, G., Mercier, I., Pestell, R. G., & Lisanti, M. P. (2006). Caveolin-1, mammary stem cells, and estrogen-dependent breast cancers. Cancer Research, 66(22), 10647–10651, Nov 15.
    PubMed CAS Google Scholar
  103. Mallepell, S., Krust, A., Chambon, P., & Brisken, C. (2006). Paracrine signaling through the epithelial estrogen receptor alpha is required for proliferation and morphogenesis in the mammary gland. Proceedings of the National Academy of Sciences of the United States of America, 103(7), 2196–2201, Feb 14.
    PubMed CAS Google Scholar
  104. Sleeman, K. E., Kendrick, H., Robertson, D., Isacke, C. M., & Ashworth, A., Smalley, M. J. (2007). Dissociation of estrogen receptor expression and in vivo stem cell activity in the mammary gland. Journal of Cell Biology 176(1), 19–26.
    Google Scholar

Download references