Muscle–bone interactions: basic and clinical aspects (original) (raw)
References
D.B. Burr, A.G. Robling, C.H. Turner, Effects of biomechanical stress on bones in animals. Bone 30, 781–786 (2002) PubMed Google Scholar
Y.X. Qin, H. Lam, S. Ferreri, C. Rubin, Dynamic skeletal muscle stimulation and its potential in bone adaptation. J. Musculoskelet. Neuronal Interact. 10, 12–24 (2010) CASPubMed Google Scholar
D.J. DiGirolamo, T.L. Clemens, S. Kousteni, The skeleton as an endocrine organ. Nat. Rev. Rheumatol. 8, 674–683 (2012) CASPubMed Google Scholar
G. Karsenty, F. Oury, Biology without walls: the novel endocrinology of bone. Ann. Rev. Physiol. 74, 87–105 (2012) CAS Google Scholar
S.C. Forbes, J.P. Little, D.G. Candow, Exercise and nutritional interventions for improving aging muscle health. Endocrine 42, 29–38 (2012) CASPubMed Google Scholar
B.K. Pedersen, Muscles and their myokines. J. Exp. Biol. 214, 337–346 (2011) CASPubMed Google Scholar
F. Norheim, T. Raastad, B. Thiede, A.C. Rustan, C.A. Drevon, F. Haugen, Proteomic identification of secreted proteins from human skeletal muscle cells and expression in response to strength training. Am. J. Physiol. Endocrinol. Metab. 301, E1013–E1021 (2011) CASPubMed Google Scholar
S. Bortoluzzi, P. Scannapieco, A. Cestaro, G.A. Danieli, S. Schiaffino, Computational reconstruction of the human skeletal muscle secretome. Proteins 62, 776–792 (2006) CASPubMed Google Scholar
B.K. Pedersen, M.A. Febbraio, Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat. Rev. Endocrinol. 8, 457–465 (2012) CASPubMed Google Scholar
M.W. Hamrick, The skeletal muscle secretome: an emerging player in muscle-bone crosstalk. BoneKEy Reports 1, Article number: 60 (2012). doi:10.1038/bonekey.2012.60
E. Seeman, J.L. Hopper, N.R. Young, C. Formica, P. Goss, C. Tsalamandris, Do genetic factors explain associations between muscle strength, lean mass, and bone density? a twin study. Am. J. Physiol. 270, E320–E327 (1996) CASPubMed Google Scholar
D. Karasik, D.P. Kiel, Evidence for pleiotropic factors in genetics of the musculoskeletal system. Bone 46, 1226–1237 (2010) CASPubMed Google Scholar
D. Karasik, C.L. Cheung, Y. Zhou, L.A. Cupples, D.P. Kiel, S. Demissie, Genome-wide association of an integrated osteoporosis-related phenotype: is there evidence for pleiotropic genes? J. Bone Miner. Res. 27, 319–330 (2012) CASPubMed CentralPubMed Google Scholar
C. Cooper, W. Dere, W. Evans, J.A. Kanis, R. Rizzoli, A.A. Sayer, C.C. Sieber, J.M. Kaufman, G. Abellan van Kan, S. Boonen, J. Adachi, B. Mitlak, Y. Tsouderos, Y. Rolland, J.Y. Reginster, Frailty and sarcopenia: definitions and outcome parameters. Osteoporos. Int. 23, 1839–1848 (2012) CASPubMed Google Scholar
D. Karasik, M. Cohen-Zinder, The genetic pleiotropy of musculoskeletal aging. Front Physiol. 3, 303 (2012) PubMed CentralPubMed Google Scholar
A. Tajar, I.T. Huhtaniemi, T.W. O’Neill, J.D. Finn, S.R. Pye, D.M. Lee, G. Bartfai, S. Boonen, F.F. Casanueva, G. Forti, A. Giwercman, T.S. Han, K. Kula, F. Labrie, M.E. Lean, N. Pendleton, M. Punab, D. Vanderschueren, F.C. Wu, EMAS Group, Characteristics of androgen deficiency in late-onset hypogonadism: results from the European Male Aging Study (EMAS). J. Clin. Endocrinol. Metab. 97, 1508–1516 (2012) CASPubMed Google Scholar
M. Spitzer, G. Huang, S. Basaria, T.G. Travison, S. Bhasin, Risks and benefits of testosterone therapy in older men. Nat. Rev. Endocrinol. 9, 414–424 (2013) CASPubMed Google Scholar
P. Lips, N.M. van Schoor, The effect of vitamin D on bone and osteoporosis. Best Pract. Res. Clin. Endocrinol. Metab. 25, 585–591 (2011) CASPubMed Google Scholar
H.A. Bischoff-Ferrari, Relevance of vitamin D in muscle health. Rev. Endocr. Metab. Disord. 13, 71–77 (2012) CASPubMed Google Scholar
L. Ceglia, S.S. Harris, Vitamin D and its role in skeletal muscle. Calcif. Tissue Int. 92, 151–162 (2013) CASPubMed Google Scholar
C.M. Girgis, R.J. Clifton-Bligh, M.W. Hamrick, M.F. Holick, J.E. Gunton, The roles of vitamin D in skeletal muscle: form, function, and metabolism. Endocr. Rev. 34, 33–83 (2013) CASPubMed Google Scholar
L. Schubert, H.F. DeLuca, Hypophosphatemia is responsible for skeletal muscle weakness of vitamin D deficiency. Arch. Biochem. Biophys. 500, 157–161 (2010) CASPubMed Google Scholar
H.F. Wang, Y. DeLuca, Is the vitamin D receptor found in muscle? Endocrinology 152, 354–363 (2011) CASPubMed Google Scholar
K.B. Hagen, H. Dagfinrud, R.H. Moe, N. Østerås, I. Kjeken, M. Grotle, G. Smedslund, Exercise therapy for bone and muscle health: an overview of systematic reviews. BMC Med. 10, 167 (2012) PubMed CentralPubMed Google Scholar
A. Giustina, G. Mazziotti, E. Canalis, Growth hormone, insulin-like growth factors, and the skeleton. Endocr. Rev. 29, 535–559 (2008) CASPubMed Google Scholar
C.G. Tahimic, Y. Wang, D.D. Bikle, Anabolic effects of IGF-1 signaling on the skeleton. Front. Endocrinol. (Lausanne) 4, 6 (2013). doi:10.3389/fendo.2013.00006. Epub 2013 Feb 4 Google Scholar
S. Perrini, L. Laviola, M.C. Carreira, A. Cignarelli, A. Natalicchio, F. Giorgino, The GH/IGF1 axis and signalling pathways in the muscle and bone: mechanisms underlying age-related skeletal muscle wasting and osteoporosis. J. Endocrinol. 205, 201–210 (2010) CASPubMed Google Scholar
J.K. Park, J.W. Hong, C.O. Kim, S.W. Kim, C.Y. Lim, Y.S. Chung, S.W. Kim, E.J. Lee, Sustained-release recombinant human growth hormone improves body composition and quality of life in adults with somatopause. J. Am. Geriatr. Soc. 59, 944–947 (2011) PubMed Google Scholar
M.D. Mavalli, D.J. Di Girolamo, Y. Fan, R.C. Riddle, K.S. Campbell, T. van Groen, S.J. Frank, M.A. Sperling, K.A. Esser, M.M. Bamman, T.L. Clemens, Distinct growth hormone receptor signaling modes regulate skeletal muscle development and insulin sensitivity in mice. J. Clin. Invest. 120, 4007–4020 (2010) CASPubMed CentralPubMed Google Scholar
M.A. Bredella, P.K. Fazeli, B. Lecka-Czernik, C.J. Rosen, A. Klibanski, IGFBP-2 is a negative predictor of cold-induced brown fat and bone mineral density in young non-obese women. Bone 53, 336–339 (2013) CASPubMed Google Scholar
J.N. Farr, N. Charkoudian, J.N. Barnes, D.G. Monroe, L.K. McCready, E.J. Atkinson, S. Amin, L.J. Melton 3rd, M.J. Joyner, S. Khosla, Relationship of sympathetic activity to bone microstructure, turnover, and plasma osteopontin levels in women. J. Clin. Endocrinol. Metab. 97, 4219–4227 (2012) CASPubMed Google Scholar
P. Boström, J. Wu, M.P. Jedrychowski, A. Korde, L. Ye, J.C. Lo, K.A. Rasbach, E.A. Boström, J.H. Choi, J.Z. Long, S. Kajimura, M.C. Zingaretti, B.F. Vind, H. Tu, S. Cinti, K. Højlund, S.P. Gygi, B.M. Spiegelman, A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 481, 463–468 (2012) PubMed CentralPubMed Google Scholar
K. Redlich, J.S. Smolen, Inflammatory bone loss: pathogenesis and therapeutic intervention. Nat. Rev. Drug Discov 11, 234–250 (2012) CASPubMed Google Scholar
D.J. Glass, Signaling pathways perturbing muscle mass. Curr. Opin. Clin. Nutr. Metab. Care 13, 225–229 (2010) CASPubMed Google Scholar
W.S. Lee, W.H. Cheung, L. Qin, N. Tang, K.S. Leung, Age-associated decrease of type IIA/B human skeletal muscle fibers. Clin. Orthop. Relat. Res. 450, 231–237 (2006) PubMed Google Scholar
A.J. Cruz-Jentoft, J.P. Baeyens, J.M. Bauer, Y. Boirie, T. Cederholm, F. Landi, F.C. Martin, J.P. Michel, Y. Rolland, S.M. Schneider, E. Topinková, M. Vandewoude, M. Zamboni, Sarcopenia: European consensus on definition and diagnosis: report of the European working group on sarcopenia in older people. Age ageing 39, 412–423 (2010) PubMed Google Scholar
R.A. Fielding, B. Vellas, W.J. Evans, S. Bhasin, J.E. Morley, A.B. Newman, G. Abellan van Kan, S. Andrieu, J. Bauer, D. Breuille, T. Cederholm, J. Chandler, C. De Meynard, L. Donini, T. Harris, A. Kannt, Keime, F. Guibert, G. Onder, D. Papanicolaou, Y. Rolland, D. Rooks, C. Sieber, E. Souhami, S. Verlaan, M. Zamboni, Sarcopenia: an undiagnosed condition in older adults. Current consensus definition: prevalence, etiology, and consequences. International working group on sarcopenia. J. Am. Med. Dir. Assoc. 12, 249–256 (2011) PubMed Google Scholar
E. Anliker, M. Toigo, Functional assessment of the muscle-bone unit in the lower leg. J. Musculoskelet. Neuronal Interact. 12, 46–55 (2012) CASPubMed Google Scholar
T. Montalcini, V. Migliaccio, F. Yvelise, S. Rotundo, E. Mazza, A. Liberato, A. Pujia, Reference values for handgrip strength in young people of both sexes. Endocrine 43, 342–345 (2013) CASPubMed Google Scholar
H.H. Bolotin, A new perspective on the causal influence of soft tissue composition on DXA-measured in vivo bone mineral density. J. Bone Miner. Res. 13, 1739–1746 (1998) CASPubMed Google Scholar
B.S. Zemel, Quantitative computed tomography and computed tomography in children. Curr. Osteoporos. Rep. 9, 284–290 (2011) PubMed Google Scholar
A.M. Cheung, J.D. Adachi, D.A. Hanley, D.L. Kendler, K.S. Davison, R. Josse, J.P. Brown, L.G. Ste-Marie, R. Kremer, M.C. Erlandson, L. Dian, A.J. Burghardt, S.K. Boyd, High-Resolution peripheral quantitative computed tomography for the assessment of bone strength and structure: a review by the Canadian Bone Strength Working Group. Curr. Osteoporos. Rep. 11(2), 136–146 (2013) PubMed CentralPubMed Google Scholar
E. Schoenau, C.M. Neu, B. Beck, F. Manz, F. Rauch, Bone mineral content per muscle cross-sectional area as an index of the functional muscle-bone unit. J. Bone Miner. Res. 17, 1095–1101 (2002) PubMed Google Scholar
K.L. Butner, K.W. Creamer, S.M. Nickols-Richardson, S.F. Clark, W.K. Ramp, W.G. Herbert, Fat and muscle indices assessed by pQCT: relationships with physical activity and type 2 diabetes risk. J. Clin. Densitom. 15, 355–361 (2012) PubMed Google Scholar
S. Coupaud, L.P. Jack, K.J. Hunt, K.J. Hunt, D.B. Allan, Muscle and bone adaptations after treadmill training in incomplete spinal cord injury: a case study using peripheral quantitative computed tomography. J. Musculoskelet. Neuronal Interact. 9, 288–297 (2009) CASPubMed Google Scholar
N. Stolzenberg, D.L. Belavy, G. Beller, G. Armbrecht, J. Semler, D. Felsenberg, Bone strength and density via pQCT in post-menopausal osteopenic women after 9 months resistive exercise with whole body vibration or proprioceptive exercise. J. Musculoskelet. Neuronal Interact. 13, 66–76 (2013) CASPubMed Google Scholar
A.A. Sayer, E.M. Dennison, H.E. Syddall, K. Jameson, H.J. Martin, C. Cooper, The developmental origins of sarcopenia: using peripheral quantitative computed tomography to assess muscle size in older people. J. Gerontol. A 63, 835–840 (2008) Google Scholar
J.N. Farr, J.L. Funk, Z. Chen, J.R. Lisse, R.M. Blew, V.R. Lee, M. Laudermilk, T.G. Lohman, S.B. Going, Skeletal muscle fat content is inversely associated with bone strength in young girls. J. Bone Miner. Res. 26, 2217–2225 (2011) PubMed Google Scholar
A.K. Wong, A. Bhargava, K. Beattie, K. Beattie, C.L. Gordon, L. Pickard, C.E. Webber, A. Papaioannou, J. Adachi, J. Adachi, Muscle density, a surrogate of intermuscular adiposity derived from pQCT, is an independent correlate of fractures in women. J. Bone Miner. Res. 26(Suppl 1), 2341–2357 (2011) Google Scholar
T. Lang, J.A. Cauley, F. Tylavsky, D. Bauer, S. Cummings, T.B. Harris, Health ABC Study, Computed tomographic measurements of thigh muscle cross-sectional area and attenuation coefficient predict hip fracture: the health, aging, and body composition study. J. Bone Miner. Res. 25, 513–519 (2010) PubMed Google Scholar
K. Deere, A. Sayers, H. Viljakainen, D. Lawlor, N. Sattar, J. Kemp, W. Fraser, J. Tobias, Distinct relationships of intramuscular and subcutaneous fat with cortical bone: findings from a cross-sectional study of young adult males and females. J. Clin. Endocrinol. Metab. 98(6), E1041 (2013) CASPubMed Google Scholar
J.F. Baker, M. Davis, R. Alexander, B.S. Zemel, S. Mostoufi-Moab, J. Shults, M. Sulik, D.J. Schiferl, M.B. Leonard, Associations between body composition and bone density and structure in men and women across the adult age spectrum. Bone 53, 34–41 (2013) PubMed Google Scholar
J.L. Ferretti, R.F. Capozza, G.R. Cointry, S.L. García, H. Plotkin, M.L. Alvarez Filgueira, J.R. Zanchetta, Gender-related differences in the relationship between densitometric values of whole-body bone mineral content and lean body mass in humans between 2 and 87 years of age. Bone 22, 683–690 (1998) CASPubMed Google Scholar
H. Zhang, X. Chai, S. Li, Z. Zhang, L. Yuan, H. Xie, H. Zhou, X. Wu, Z. Sheng, E. Liao, Age-related changes in body composition and their relationship with bone mineral density decreasing rates in central south Chinese postmenopausal women. Endocrine 43, 643–650 (2013) CASPubMed Google Scholar
N.K. Lebrasseur, S.J. Achenbach, L.J. Melton 3rd, S. Amin, S. Khosla, Skeletal muscle mass is associated with bone geometry and microstructure and serum insulin-like growth factor binding protein-2 levels in adult women and men. J. Bone Miner. Res. 27, 2159–2169 (2012) CASPubMed CentralPubMed Google Scholar
H.M. Frost, Muscle strength, bone mass, and age-related bone loss. J. Bone Miner. Res. 12, 1547–1551 (1997) Google Scholar
E. Schoenau, From mechanostat theory to development of the “functional muscle-bone-unit”. J. Musculoskelet. Neuronal Interact. 5, 232–238 (2005) CASPubMed Google Scholar
L.F. Bonewald, The amazing osteocyte. J. Bone Miner. Res. 26, 229–238 (2011) CASPubMed Google Scholar
C. Rubin, A.S. Turner, S. Bain, C. Mallinckrodt, K. McLeod, Anabolism: low mechanical signals strengthen long bones. Nature 412, 603–604 (2001) CASPubMed Google Scholar
F. Rauch, D.A. Bailey, A. Baxter-Jones, R. Mirwald, R. Faulkner, The ‘muscle-bone unit’ during the pubertal growth spurt. Bone 34, 771–775 (2004) PubMed Google Scholar
O. Fricke, R. Beccard, O. Semler, E. Schoenau, Analyses of muscular mass and function: the impact on bone mineral density and peak muscle mass. Pediatr. Nephrol. 25, 2393–2400 (2010) PubMed Google Scholar
L. Xu, Q. Wang, Q. Wang, A. Lyytikäinen, T. Mikkola, E. Völgyi, S. Cheng, P. Wiklund, E. Munukka, P. Nicholson, M. Alén, S. Cheng, Concerted actions of insulin-like growth factor 1, testosterone, and estradiol on peripubertal bone growth: a 7-year longitudinal study. J. Bone Miner. Res. 26, 2204–2211 (2011) CASPubMed Google Scholar
G.L. Klein, L.A. Fitzpatrick, C.B. Langman, T.J. Beck, T.O. Carpenter, V. Gilsanz, I.A. Holm, M.B. Leonard, B.L. Specker, ASBMR Group, The state of pediatric bone: summary of the ASBMR pediatric bone initiative. J. Bone Miner. Res. 20, 2075–2081 (2005) PubMed Google Scholar
M.B. Leonard, A. Elmi, S. Mostoufi-Moab, J. Shults, J.M. Burnham, M. Thayu, L. Kibe, R.J. Wetzsteon, B.S. Zemel, Effects of sex, race, and puberty on cortical bone and the functional muscle bone unit in children, adolescents, and young adults. J. Clin. Endocrinol. Metab. 95, 1681–1689 (2010) CASPubMed Google Scholar
J.M. Burnham, J. Shults, H. Sembhi, B.S. Zemel, M.B. Leonard, The dysfunctional muscle-bone unit in juvenile idiopathic arthritis. J. Musculoskelet. Neuronal Interact. 6, 351–352 (2006) CASPubMed Google Scholar
A. Tsampalieros, P. Gupta, M.R. Denburg, J. Shults, B.S. Zemel, S. Mostoufi-Moab, R.J. Wetzsteon, R.M. Herskovitz, K.M. Whitehead, M.B. Leonard, Glucocorticoid effects on changes in bone mineral density and cortical structure in childhood nephrotic syndrome. J. Bone Miner. Res. 28, 480–488 (2013) CASPubMed Google Scholar
A. LeBlanc, R. Rowe, V. Schneider, H. Evans, T. Hedrick, Regional muscle loss after short duration spaceflight. Aviat. Space Environ. Med. 66, 1151–1154 (1995) CASPubMed Google Scholar
T. Trappe, Influence of aging and long-term unloading on the structure and function of human skeletal muscle. Appl. Physiol. Nutr. Metab. 34, 459–464 (2009) CASPubMed CentralPubMed Google Scholar
M.L. Bianchi, A. Mazzanti, E. Galbiati, S. Saraifoger, A. Dubini, F. Cornelio, L. Morandi, Bone mineral density and bone metabolism in Duchenne muscular dystrophy. Osteoporos. Int. 14, 761–767 (2003) CASPubMed Google Scholar
Y. Shirazi-Fard, J.S. Kupke, S.A. Bloomfield, H.A. Hogan, Discordant recovery of bone mass and mechanical properties during prolonged recovery from disuse. Bone 52, 433–443 (2013) PubMed Google Scholar
P. Szulc, S. Boutroy, S. Boutroy, N. Vilayphiou, M. Schoppet, M. Rauner, R. Chapurlat, C. Hamann, L.C. Hofbauer, Correlates of bone microarchitectural parameters and serum sclerostin levels in men: the STRAMBO study. J. Bone Miner. Res. 28(8), 1760–1770 (2013) CASPubMed Google Scholar
P. Szulc, S. Blaizot, S. Boutroy, N. Vilayphiou, S. Boonen, R. Chapurlat, Impaired bone microarchitecture at the distal radius in older men with low muscle mass and grip strength: the STRAMBO study. J. Bone Miner. Res. 28, 169–178 (2013) PubMed Google Scholar
A. Sharir, T. Stern, C. Rot, R. Shahar, E. Zelzer, Muscle force regulates bone shaping for optimal load-bearing capacity during embryogenesis. Development 138, 3247–3259 (2011) CASPubMed Google Scholar
N.C. Nowlan, J. Sharpe, K.A. Roddy, P.J. Prendergast, P. Murphy, Mechanobiology of embryonic skeletal development: insights from animal models. Birth Defects Res. C 90, 203–213 (2010) CAS Google Scholar
J. Kahn, Y. Shwartz, E. Blitz, S. Krief, A. Sharir, D.A. Breitel, R. Rattenbach, F. Relaix, P. Maire, R.B. Rountree, D.M. Kingsley, E. Zelzer, Muscle contraction is necessary to maintain joint progenitor cell fate. Dev. Cell 16, 734–743 (2009) CASPubMed Google Scholar
J.G. Hall, Analysis of Pena Shokeir phenotype. Am. J. Med. Genet. 25, 99–117 (1986) CASPubMed Google Scholar
P. Juffer, R.T. Jaspers, P. Lips, A.D. Bakker, J. Klein-Nulend, Expression of muscle anabolic and metabolic factors in mechanically loaded MLO-Y4 osteocytes. Am. J. Physiol. Endocrinol. Metab. 302, E389–E395 (2012) CASPubMed Google Scholar
N.C. Nowlan, C. Bourdon, G. Dumas, S. Tajbakhsh, P.J. Prendergast, P. Murphy, Developing bones are differentially affected by compromised skeletal muscle formation. Bone 46, 1275–1285 (2010) PubMed CentralPubMed Google Scholar
N.C. Nowlan, G. Dumas, S. Tajbakhsh, P.J. Prendergast, P. Murphy, Biophysical stimuli induced by passive movements compensate for lack of skeletal muscle during embryonic skeletogenesis. Biomech. Model. Mechanobiol. 11, 207–219 (2012) PubMed Google Scholar
S.E. Warner, D.A. Sanford, B.A. Becker, S.D. Bain, S. Srinivasan, T.S. Gross, Botox induced muscle paralysis rapidly degrades bone. Bone 38, 257–264 (2006) CASPubMed CentralPubMed Google Scholar
D. Joulia-Ekaza, G. Cabello, The myostatin gene: physiology and pharmacological relevance. Curr. Opin. Pharmacol. 7, 310–315 (2007) CASPubMed Google Scholar
A.C. McPherron, A.M. Lawler, S.J. Lee, Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature 387, 83–90 (1997) CASPubMed Google Scholar
A.C. McPherron, S.J. Lee, Double muscling in cattle due to mutations in the myostatin gene. Proc. Natl. Acad. Sci. USA 94, 12457–12461 (1997) CASPubMed Google Scholar
M. Schuelke, K.R. Wagner, L.E. Stolz, C. Hübner, T. Riebel, W. Kömen, T. Braun, J.F. Tobin, S.J. Lee, Myostatin mutation associated with gross muscle hypertrophy in a child. N. Engl. J. Med. 350, 2682–2688 (2004) CASPubMed Google Scholar
T.A. Zimmers, M.V. Davies, L.G. Koniaris, P. Haynes, A.F. Esquela, K.N. Tomkinson, A.C. McPherron, N.M. Wolfman, S.J. Lee, Induction of cachexia in mice by systemically administered myostatin. Science 296, 1486–1488 (2002) CASPubMed Google Scholar
S. Reisz-Porszasz, S. Bhasin, J.N. Artaza, R. Shen, I. Sinha-Hikim, A. Hogue, T.J. Fielder, N.F. Gonzalez-Cadavid, Lower skeletal muscle mass in male transgenic mice with muscle-specific overexpression of myostatin. Am. J. Physiol. Endocrinol. Metab. 285, E876–E888 (2003) CASPubMed Google Scholar
M.W. Hamrick, A.C. McPherron, C.O. Lovejoy, Bone mineral content and density in the humerus of myostatin-deficient mice. Calcif. Tissue Int. 71, 63–68 (2002) CASPubMed Google Scholar
M.W. Hamrick, Increased bone mineral density in the femora of GDF8 knockout mice. Anat. Rec. 272, 388–391 (2003) Google Scholar
E. Montgomery, C. Pennington, M. Hamrick, Muscle-bone interactions in dystrophin-deficient and myostatin-deficient mice. Anat. Rec. 286, 814–822 (2005) Google Scholar
M.N. Elkasrawy, M.W. Hamrick, Myostatin (GDF-8) as a key factor linking muscle mass and bone structure. J. Musculoskelet. Neuronal Interact. 10, 56–63 (2010) CASPubMed CentralPubMed Google Scholar
M.R. Morissette, J.C. Stricker, M.A. Rosenberg, C. Buranasombati, E.B. Levitan, M.A. Mittleman, A. Rosenzweig, Effects of myostatin deletion in aging mice. Aging Cell 8, 573–583 (2009) CASPubMed CentralPubMed Google Scholar
M.W. Hamrick, T. Samaddar, C. Pennington, J. McCormick, Increased muscle mass with myostatin deficiency improves gains in bone strength with exercise. J. Bone Miner. Res. 21, 477–483 (2006) CASPubMed Google Scholar
M.W. Hamrick, X. Shi, W. Zhang, C. Pennington, H. Thakore, M. Haque, B. Kang, C.M. Isales, S. Fulzele, K.H. Wenger, Loss of myostatin (GDF8) function increases osteogenic differentiation of bone marrow-derived mesenchymal stem cells but the osteogenic effect is ablated with unloading. Bone 40, 1544–1553 (2007) CASPubMed CentralPubMed Google Scholar
T. Guo, W. Jou, T. Chanturiya, J. Portas, O. Gavrilova, A.C. McPherron, Myostatin inhibition in muscle, but not adipose tissue, decreases fat mass and improves insulin sensitivity. PLoS One 4, e4937 (2009) PubMed CentralPubMed Google Scholar
C. Zhang, C. McFarlane, S. Lokireddy, S. Masuda, X. Ge, P.D. Gluckman, M. Sharma, R. Kambadur, Inhibition of myostatin protects against diet-induced obesity by enhancing fatty acid oxidation and promoting a brown adipose phenotype in mice. Diabetologia 55, 183–193 (2012) CASPubMed Google Scholar
M. Elkasrawy, D. Immel, X. Wen, X. Liu, L.F. Liang, M.W. Hamrick, Immunolocalization of myostatin (GDF-8) following musculoskeletal injury and the effects of exogenous myostatin on muscle and bone healing. J. Histochem. Cytochem. 60, 22–30 (2012) CASPubMed Google Scholar
S. Lokireddy, I.W. Wijesoma, S. Bonala, M. Wei, S.K. Sze, C. McFarlane, R. Kambadur, M. Sharma, Myostatin is a novel tumoral factor that induces cancer cachexia. Biochem. J. 446, 23–36 (2012) CASPubMed CentralPubMed Google Scholar
Z.L. Zhang, J.W. He, Y.J. Qin, Y.Q. Hu, M. Li, H. Zhang, W.W. Hu, Y.J. Liu, J.M. Gu, Association between myostatin gene polymorphisms and peak BMD variation in Chinese nuclear families. Osteoporos. Int. 19, 39–47 (2008) CASPubMed Google Scholar
K.M. Lakshman, S. Bhasin, C. Corcoran, L.A. Collins-Racie, L. Tchistiakova, S.B. Forlow, K. St Ledger, M.E. Burczynski, A.J. Dorner, E.R. Lavallie, Measurement of myostatin concentrations in human serum: circulating concentrations in young and older men and effects of testosterone administration. Mol. Cell. Endocrinol. 302, 26–32 (2009) CASPubMed Google Scholar
P. Szulc, M. Schoppet, C. Goettsch, M. Rauner, T. Dschietzig, R. Chapurlat, L.C. Hofbauer, Endocrine and clinical correlates of myostatin serum concentration in men–the STRAMBO study. J. Clin. Endocrinol. Metab. 97, 3700–3708 (2012) CASPubMed Google Scholar
R.A. Brekken, E.H. Sage, SPARC, a matricellular protein: at the crossroads of cell-matrix communication. Matrix Biol. 19, 816–827 (2001) CASPubMed Google Scholar
L.H. Jorgensen, S.J. Petersson, J. Sellathurai, D.C. Andersen, S. Thayssen, D.J. Sant, C.H. Jensen, H.D. Schrøder, Secreted protein acidic and rich in cysteine (SPARC) in human skeletal muscle. J. Histochem. Cytochem. 57, 29–39 (2009) PubMed Google Scholar
B.R. Barnes, E.R. Szelenyi, G.L. Warren, M.L. Urso, Alterations in mRNA and protein levels of metalloproteinases-2, -9, and -14 and tissue inhibitor of metalloproteinase-2 in responses to traumatic skeletal muscle injury. Am. J. Physiol. Cell Physiol. 297, C1501–C1508 (2009) CASPubMed Google Scholar
L.S. Quinn, B.G. Anderson, L. Strait-Bodey, A. Stroud, J. Argiles, Oversecretion of interleukin-15 from skeletal muscle reduces adiposity. Am. J. Physiol. Endocrinol. Metab. 296, E191–E202 (2009) CASPubMed Google Scholar
B.K. Pedersen, F. Edward, Adolph distinguished lecture: muscle as an endocrine organ: IL-6 and other myokines. J. Appl. Physiol. 107, 1006–1014 (2009) CASPubMed Google Scholar
M.N. Weitzmann, C. Roggia, G. Toraldo, L. Weitzmann, R. Pacifici, Increased production of IL-7 uncouples bone formation from bone resorption during estrogen deficiency. J. Clin. Invest. 110, 1643–1650 (2002) CASPubMed CentralPubMed Google Scholar
W.M. Jackson, A.B. Aragon, J. Onodera, S.M. Koehler, Y. Ji, J.D. Bulken-Hoover, J.A. Vogler, R.S. Tuan, L.J. Nesti, Cytokine expression in muscle following traumatic injury. J. Orthop. Res. 29, 1613–1620 (2011) CASPubMed CentralPubMed Google Scholar
K. Tanaka, E. Matsumoto, Y. Higashimaki, T. Katagiri, T. Sugimoto, S. Seino, H. Kaji, Role of osteoglycin in the linkage between muscle and bone. J. Biol. Chem. 287, 11616–11628 (2012) CASPubMed Google Scholar
K. Tanaka, E. Matsumoto, Y. Higashimaki, T. Sugimoto, S. Seino, H. Kaji, FAM5C is a soluble osteoblast differentiation factor linking muscle to bone. Biochem. Biophys. Res. Commun. 418, 134–139 (2012) CASPubMed Google Scholar
M.W. Hamrick, P.L. McNeil, S.L. Patterson, Role of muscle-derived growth factors in bone formation. J. Musculoskelet. Neuronal Interact. 10, 64–70 (2010) CASPubMed CentralPubMed Google Scholar
K. Jähn, N. Lara-Castillo, L. Brotto, C.L. Mo, M.L. Johnson, M. Brotto, L.F. Bonewald, Skeletal muscle secreted factors prevent glucocorticoid-induced osteocyte apoptosis through activation of β-catenin. Eur. Cell Mater. 24, 197–209 (2012). Discussion 209–210 PubMed CentralPubMed Google Scholar
E.L. Abreu, M. Stern, M. Brotto, Bone-muscle interactions: ASBMR Topical Meeting, July 2012. IBMS BoneKEy 9, Article number: 239 (2012). doi:10.1038/bonekey.2012.239
C. Mo, S. Romero-Suarez, L. Bonewald, M. Johnson, M. Brotto, Prostaglandin e2: from clinical applications to its potential role in bone- muscle crosstalk and myogenic differentiation. Recent Pat. Biotechnol. 6, 223–229 (2012) CASPubMed CentralPubMed Google Scholar
S.I. Zacks, M.F. Sheff, Periosteal and metaplastic bone formation in mouse minced muscle regeneration. Lab. Invest. 46, 405–412 (1982) CASPubMed Google Scholar
P.S. Landry, A. Marino, K. Sadasivan, A. Albright, Effect of soft-tissue trauma on the early periosteal response of bone to injury. J. Trauma 48, 479–483 (2000) CASPubMed Google Scholar
S.E. Utvag, K.B. Iversen, O. Grundnes, O. Reikeras, Poor muscle coverage delays fracture healing in rats. Acta Orthop Scand. 73, 471–474 (2002) PubMed Google Scholar
H. Stein, S.M. Perren, J. Cordey, J. Kenwright, R. Mosheiff, M.J. Francis, The muscle bed–a crucial factor for fracture healing: a physiological concept. Orthopedics 25, 1379–1383 (2002) PubMed Google Scholar
M.M. Reverte, R. Dimitriou, N.K. Kanakaris, P.V. Giannoudis, What is the effect of compartment syndrome and fasciotomies on fracture healing in tibial fractures? Injury 42, 1402–1407 (2011) PubMed Google Scholar
L.E. Harry, A. Sandison, E.M. Paleolog, U. Hansen, M.F. Pearse, J. Nanchahal, Comparison of the healing of open tibial fractures covered with either muscle or fasciocutaneous tissue in a murine model. J. Orthop. Res. 26, 1238–1244 (2008) PubMed Google Scholar
S. Gopal, S. Majumder, A.G. Batchelor, S.L. Knight, S.L. Knight, P. De Boer, R.M. Smith, Fix and flap: the radical orthopaedic and plastic treatment of severe open fractures of the tibia. J. Bone Joint Surg. Br. 82, 959–966 (2000) CASPubMed Google Scholar
A. Schindeler, R. Liu, D.G. Little, The contribution of different cell lineages to bone repair: exploring a role for muscle stem cells. Differentiation 77, 12–18 (2009) CASPubMed Google Scholar
R. Liu, A. Schindeler, D.G. Little, The potential role of muscle in bone repair. J. Musculoskelet. Neuronal Interact. 10, 71–76 (2010) CASPubMed Google Scholar
G.E. Glass, J.K. Chan, A. Freidin, M. Feldmann, N.J. Horwood, J. Nanchahal, TNF-alpha promotes fracture repair by augmenting the recruitment and differentiation of muscle-derived stromal cells. Proc. Natl. Acad. Sci. U S A 108, 1585–1590 (2011) CASPubMed CentralPubMed Google Scholar
D.M. Cairns, P. Lee, T. Uchimura, C.R. Seufert, H. Kwon, L. Zeng, The role of muscle cells in regulating cartilage matrix production. J. Orthop. Res. 28, 529–536 (2010) CASPubMed CentralPubMed Google Scholar
G. Duda, W. Taylor, T. Winkler, G. Matziolis, M. Heller, N. Haas, C. Perka, K.D. Schaser, Biomechanical, microvascular, and cellular factors promote muscle and bone re generation. Exerc. Sports Sci. Rev. 36, 64–70 (2008) Google Scholar
Y. Hao, Y. Ma, X. Wang, F. Jin, S. Ge, Short-term muscle atrophy caused by botulinum toxin-A local injection impairs fracture healing in the rat femur. J. Orthop. Res. 30, 574–580 (2012) CASPubMed Google Scholar
E. Kellum, H. Starr, P. Arounleut, D. Immel, S. Fulzele, K. Wenger, M.W. Hamrick, Myostatin (GDF-8) deficiency increases fracture callus size, Sox-5 expression and callus bone volume. Bone 44, 17–23 (2009) CASPubMed CentralPubMed Google Scholar
M.W. Hamrick, P. Arounleut, E. Kellum, M. Cain, D. Immel, L.F. Liang, Recombinant myostatin (GDF-8) propeptide enhances the repair and regeneration of both muscle and bone in a model of deep penetrant musculoskeletal injury. J. Trauma 69, 579–583 (2010) CASPubMed CentralPubMed Google Scholar
L.D. Gillespie, M.C. Robertson, W.J. Gillespie, C. Sherrington, S. Gates, L.M. Clemson, S.E. Lamb, Interventions for preventing falls in older people living in the community. Cochrane Database Syst. Rev. 9, 007146 (2012) Google Scholar
A. Mithal, J.P. Bonjour, S. Boonen, P. Burckhardt, H. Degens, G. El Hajj Fuleihan, R. Josse, P. Lips, J. Morales Torres, R. Rizzoli, N. Yoshimura, D.A. Wahl, C. Cooper, B. Dawson-Hughes, IOF CSA Nutrition Working Group, Impact of nutrition on muscle mass, strength, and performance in older adults. Osteoporos. Int. 24(5), 1555 (2012) PubMed Google Scholar
J. Rittweger, Vibration as an exercise modality: how it may work, and what its potential might be. Eur. J. Appl. Physiol. 108, 877–904 (2010) PubMed Google Scholar
J. Rittweger, G. Beller, G. Armbrecht, E. Mulder, B. Buehring, U. Gast, F. Dimeo, H. Schubert, A. de Haan, D.F. Stegeman, H. Schiessl, D. Felsenberg, Prevention of bone loss during 56 days of strict bed rest by side-alternating resistive vibration exercise. Bone 46, 137–147 (2010) PubMed Google Scholar
M.E. Chan, G. Uzer, C.T. Rubin, The potential benefits and inherent risks of vibration as a non-drug therapy for the prevention and treatment of osteoporosis. Curr. Osteoporos. Rep. 11, 36–44 (2013) PubMed Google Scholar
M.W. Hamrick, Myostatin (GDF-8) as a Therapeutic Target for the Prevention of Osteoporotic Fractures. IBMS BoneKEy. 7, 8–17 (2010). doi:10.1138/20100423 Google Scholar
K. Tsuchida, M. Nakatani, K. Hitachi, A. Uezumi, Y. Sunada, H. Ageta, K. Inokuchi, Activin signaling as an emerging target for therapeutic interventions. Cell. Commun. Signal. 7, 15–19 (2009) PubMed CentralPubMed Google Scholar
A.D. Mitchell, R.J. Wall, In vivo evaluation of changes in body composition of transgenic mice expressing the myostatin pro domain using dual energy X-ray absorptiometry. Growth Dev. Aging 70, 25–37 (2007) CASPubMed Google Scholar
S.J. Lee, L.A. Reed, M.V. Davies, S. Girgenrath, M.E. Goad, K.N. Tomkinson, J.F. Wright, C. Barker, G. Ehrmantraut, J. Holmstrom, B. Trowell, B. Gertz, M.S. Jiang, S.M. Sebald, M. Matzuk, E. Li, L.F. Liang, E. Quattlebaum, R.L. Stotish, N.M. Wolfman, Regulation of muscle growth by multiple ligands signalling through activin type II receptors. Proc. Natl. Acad. Sci. U S A 102, 18117–18122 (2005) CASPubMed CentralPubMed Google Scholar
S. Bogdanovich, T.O. Krag, E.R. Barton, L.D. Morris, L.A. Whittemore, R.S. Ahima, T.S. Khurana, Functional improvement of dystrophic muscle by myostatin blockade. Nature 420, 418–421 (2002) CASPubMed Google Scholar
K.R. Wagner, J.L. Fleckenstein, A.A. Amato, R.J. Barohn, K. Bushby, D.M. Escolar, K.M. Flanigan, A. Pestronk, R. Tawil, G.I. Wolfe, M. Eagle, J.M. Florence, W.M. King, S. Pandya, V. Straub, P. Juneau, K. Meyers, C. Csimma, T. Araujo, R. Allen, S.A. Parsons, J.M. Wozney, E.R. Lavallie, J.R. Mendell, A phase I/II trial of MYO-029 in adult subjects with muscular dystrophy. Ann. Neurol. 63, 561–571 (2008) CASPubMed Google Scholar
N.K. LeBrasseur, T.M. Schelhorn, B.L. Bernardo, P.G. Cosgrove, P.M. Loria, T.A. Brown, Myostatin inhibition enhances the effects of exercise on performance and metabolic outcomes in aged mice. J. Gerontol. A 64, 940–948 (2009) Google Scholar
P. Bialek, J. Parkington, L. Warner, M. St. Andre, L. Jian, D. Gavin, C. Wallace, J. Zhang, G. Yan, A. Root, H. Seeherman, P. Yaworsky, Mice treated with a myostatin/GDF-8 decoy receptor, ActRIIB-Fc, exhibit a tremendous increase in bone mass. Bone 42(Suppl 1), S46 (2008) Google Scholar
V. Ferguson, R. Paietta, L. Stodieck, A. Hanson, M. Young, T. Bateman, M. Lemus, P. Kostenuik, E. Jiao, X. Zhou, J. Lu, W. Simonet, D. Lacey, H. Han, Inhibiting myostatin prevents microgravity-associated bone loss in mice. J. Bone Miner. Res. 24(Suppl 1), 1288 (2009) Google Scholar
K.M. Attie, N.G. Borgstein, Y. Yang, C.H. Condon, D.M. Wilson, A.E. Pearsall, R. Kumar, D.A. Willins, J.S. Seehra, M.L. Sherman, A single ascending-dose study of muscle regulator ace-031 in healthy volunteers. Muscle Nerve 47, 416–423 (2013) CASPubMed Google Scholar
O. Guardiola, P. Lafuste, S. Brunelli, S. Iaconis, T. Touvier, P. Mourikis, K. De Bock, E. Lonardo, G. Andolfi, A. Bouché, G.L. Liguori, M.M. Shen, S. Tajbakhsh, G. Cossu, P. Carmeliet, G. Minchiotti, Cripto regulates skeletal muscle regeneration and modulates satellite cell determination by antagonizing myostatin. Proc. Natl. Acad. Sci. U S A 109, E3231–E3240 (2012) CASPubMed CentralPubMed Google Scholar
H. Yamamoto, E.G. Williams, L. Mouchiroud, C. Cantó, W. Fan, M. Downes, C. Héligon, G.D. Barish, B. Desvergne, R.M. Evans, K. Schoonjans, J. Auwerx, NCoR1 is a conserved physiological modulator of muscle mass and oxidative function. Cell 147, 827–839 (2011) CASPubMed CentralPubMed Google Scholar