Correlation between thyroid function, sensitivity to thyroid hormones and metabolic dysfunction-associated fatty liver disease in euthyroid subjects with newly diagnosed type 2 diabetes (original) (raw)

References

  1. M. Eslam, A.J. Sanyal, J. George; International consensus P, MAFLD: a consensus-driven proposed nomenclature for metabolic associated fatty liver disease. Gastroenterology 158(7), 1999–2014.e1 (2020). https://doi.org/10.1053/j.gastro.2019.11.312
    Article CAS PubMed Google Scholar
  2. M. Eslam, P.N. Newsome, S.K. Sarin et al. A new definition for metabolic dysfunction-associated fatty liver disease: an international expert consensus statement. J. Hepatol. 73(1), 202–209 (2020). https://doi.org/10.1016/j.jhep.2020.03.039
    Article PubMed Google Scholar
  3. G.E.H. Lim, A. Tang, C.H. Ng et al. An observational data meta-analysis on the differences in prevalence and risk factors between MAFLD vs NAFLD. Clin. Gastroenterol. Hepatol. S1542-3565(21), 01276–3 (2021). https://doi.org/10.1016/j.cgh.2021.11.038
    Article Google Scholar
  4. A.M. Diehl, C. Day, Cause, pathogenesis, and treatment of nonalcoholic steatohepatitis. N. Engl. J. Med. 377(21), 2063–2072 (2017). https://doi.org/10.1056/NEJMra1503519
    Article CAS PubMed Google Scholar
  5. C.H. Ng, D.Q. Hunag, M.H. Nguyen, NAFLD versus MAFLD: prevalence, outcomes and implications of a change in name. Clin. Mol. Hepatol. 28(4), 790–801 (2022). https://doi.org/10.3350/cmh.2022.0070
    Article PubMed PubMed Central Google Scholar
  6. H. Kim, C.J. Lee, S.H. Ahn, K.S. Lee, B.K. Lee, S.J. Baik, S.U. Kim, J.I. Lee, MAFLD predicts the risk of cardiovascular disease better than NAFLD in asymptomatic subjects with health check-ups. Dig. Dis. Sci. 67(10), 4919–4928 (2022). https://doi.org/10.1007/s10620-022-07508-6
    Article CAS PubMed Google Scholar
  7. Q.M. Anstee, G. Targher, C.P. Day, Progression of NAFLD to diabetes mellitus, cardiovascular disease or cirrhosis. Nat. Rev. Gastroenterol. Hepatol. 10(6), 330–344 (2013). https://doi.org/10.1038/nrgastro.2013.41
    Article CAS PubMed Google Scholar
  8. E. Piantanida, S. Ippolito, D. Gallo, E. Masiello, P. Premoli, C. Cusini, S. Rosetti, J. Sabatino, S. Segato, F. Trimarchi, L. Bartalena, M.L. Tanda, The interplay between thyroid and liver: implications for clinical practice. J. Endocrinol. Investig. 43(7), 885–899 (2020). https://doi.org/10.1007/s40618-020-01208-6
    Article CAS Google Scholar
  9. H.C. Chi, C.Y. Chen, M.M. Tsai, C.Y. Tsai, K.H. Lin, Molecular functions of thyroid hormones and their clinical significance in liver-related diseases. Biomed. Res. Int. 2013, 601361 (2013). https://doi.org/10.1155/2013/601361
    Article CAS PubMed PubMed Central Google Scholar
  10. B. Biondi, G.J. Kahaly, R.P. Robertson, Thyroid dysfunction and diabetes mellitus: two closely associated disorders. Endocr. Rev. 40(3), 789–824 (2019). https://doi.org/10.1210/er.2018-00163
    Article PubMed PubMed Central Google Scholar
  11. M. Laclaustra, B. Moreno-Franco, J.M. Lou-Bonafonte, R. Mateo-Gallego, J.A. Casasnovas, P. Guallar-Castillon, A. Cenarro, F. Civeira, Impaired sensitivity to thyroid hormones is associated with diabetes and metabolic syndrome. Diabetes Care 42(2), 303–310 (2019). https://doi.org/10.2337/dc18-1410
    Article CAS PubMed Google Scholar
  12. S. Lai, J. Li, Z. Wang, W. Wang, H. Guan, Sensitivity to thyroid hormone indices are closely associated with NAFLD. Front. Endocrinol.12, 766419 (2021). https://doi.org/10.3389/fendo.2021.766419
    Article Google Scholar
  13. Y. Sun, D. Teng, L. Zhao, X. Shi, Y. Li, Z. Shan, W. Teng, Impaired sensitivity to thyroid hormones is associated with hyperuricemia, obesity, and cardiovascular disease risk in subjects with subclinical hypothyroidism. Thyroid 32(4), 376–384 (2022). https://doi.org/10.1089/thy.2021.0500
    Article CAS PubMed Google Scholar
  14. B. Liu, Z. Wang, J. Fu, H. Guan, Z. Lyu, W. Wang, Sensitivity to thyroid hormones and risk of prediabetes: a cross-sectional study. Front. Endocrinol. 12, 657114 (2021). https://doi.org/10.3389/fendo.2021.657114
    Article Google Scholar
  15. C. Wang, Q. Niu, H. Lv, Q. Li, Y. Ma, J. Tan, C. Liu, Elevated TPOAb is a strong predictor of autoimmune development in patients of type 2 diabetes mellitus and non-alcoholic fatty liver disease: a case-control study. Diabetes Metab. Syndr. Obes. 13, 4369–4378 (2020). https://doi.org/10.2147/DMSO.S280231
    Article PubMed PubMed Central Google Scholar
  16. X. Zhang, J. Zhang, Y. Dai, J. Qin, Serum thyroid hormones levels are significantly associated with nonalcoholic fatty liver disease in euthyroid chinese population. Clin. Lab 66(10), 2047–2053 (2020). https://doi.org/10.7754/Clin.Lab.2020.200219
    Article CAS Google Scholar
  17. K.G. Alberti, P.Z. Zimmet, Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet. Med 15(7), 539–553 (1998). https://doi.org/10.1002/(SICI)1096-9136(199807)15:7<539::AID-DIA668>3.0.CO;2-S
    Article CAS PubMed Google Scholar
  18. X. Li, Z.G. Zhou, H.Y. Qi, X.Y. Chen, G. Huang, Replacement of insulin by fasting C-peptide in modified homeostasis model assessment to evaluate insulin resistance and islet beta cell function. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 29(4), 419–423 (2004)
    CAS PubMed Google Scholar
  19. Z. Hassan-Smith, M. Hewison, N. Gittoes, Vitamin D supplementation and prevention of type 2 diabetes. N. Engl. J. Med. 381(18), 1784–1785 (2019). 10.1056/NEJMc1912185
    Article PubMed Google Scholar
  20. A. Jostel, W.D. Ryder, S.M. Shalet, The use of thyroid function tests in the diagnosis of hypopituitarism: definition and evaluation of the TSH Index. Clin. Endocrinol. 71(4), 529–534 (2009). https://doi.org/10.1111/j.1365-2265.2009.03534.x
    Article CAS Google Scholar
  21. H. Yagi, J. Pohlenz, Y. Hayashi, A. Sakurai, S. Refetoff, Resistance to thyroid hormone caused by two mutant thyroid hormone receptors beta, R243Q and R243W, with marked impairment of function that cannot be explained by altered in vitro 3,5,39-triiodothyroinine binding affifinity. J. Clin. Endocrinol. Metab. 82(5), 1608–1614 (1997). https://doi.org/10.1210/jcem.82.5.3945
    Article CAS PubMed Google Scholar
  22. S. Yang, S. Lai, Z. Wang, A. Liu, W. Wang, H. Guan, Thyroid Feedback Quantile-based Index correlates strongly to renal function in euthyroid individuals. Ann. Med. 53(1), 1945–1955 (2021). https://doi.org/10.1080/07853890.2021.1993324
    Article CAS PubMed PubMed Central Google Scholar
  23. W. He, X. An, L. Li, X. Shao, Q. Li, Q. Yao, J.A. Zhang, Relationship between hypothyroidism and non-alcoholic fatty liver disease: a systematic review and meta-analysis. Front. Endocrinol. 8, 335 (2017). https://doi.org/10.3389/fendo.2017.00335
    Article Google Scholar
  24. P. Angulo, J.M. Hui, G. Marchesini et al. The NAFLD fibrosis score: a noninvasive system that identifies liver fibrosis in patients with NAFLD. Hepatology 45(4), 846–854 (2007). https://doi.org/10.1002/hep.21496
    Article CAS PubMed Google Scholar
  25. C.T. Wai, J.K. Greenson, R.J. Fontana, J.D. Kalbflfleisch, J.A. Marrero, H.S. Conjeevaram, A.S. Lok, A simple noninvasive index can predict both signifificant fifibrosis and cirrhosis in patients with chronic hepatitis C. Hepatology 38(2), 518–526 (2003). https://doi.org/10.1053/jhep.2003.50346
    Article PubMed Google Scholar
  26. R.K. Sterling, E. Lissen, N. Clumeck et al. Development of a simple noninvasive index to predict significant fifibrosis in patients with HIV/HCV coinfection. Hepatology 43(6), 1317–1325 (2006). https://doi.org/10.1002/hep.21178
    Article CAS PubMed Google Scholar
  27. L. Castera, M. Friedrich-Rust, R. Loomba, Noninvasive assessment of liver disease in patients with nonalcoholic fatty liver disease. Gastroenterology 156(5), 1264–1281.e4 (2019). https://doi.org/10.1053/j.gastro.2018.12.036
    Article PubMed Google Scholar
  28. Z.M. Younossi, R. Loomba, Q.M. Anstee, M.E. Rinella, E. Bugianesi, G. Marchesini, Diagnostic modalities for nonalcoholic fatty liver disease, nonalcoholic steatohepatitis, and associated fibrosis. Hepatology 68(1), 349–360 (2018). https://doi.org/10.1002/hep.29721
    Article PubMed Google Scholar
  29. Y.L. Wu, R. Kumar, M.F. Wang, M. Singh, J.F. Huang, Y.Y. Zhu, S. Lin, Validation of conventional non-invasive fibrosis scoring systems in patients with metabolic associated fatty liver disease. World J. Gastroenterol. 27(34), 5753–5763 (2021). https://doi.org/10.3748/wjg.v27.i34.5753
    Article CAS PubMed PubMed Central Google Scholar
  30. J. Rigor, A. Diegues, J. Presa, P. Barata, D. Martins-Mendes, Noninvasive fibrosis tools in NAFLD: validation of APRI, BARD, FIB-4, NAFLD fibrosis score, and Hepamet fibrosis score in a Portuguese population. Postgrad. Med. 134(4), 435–440 (2022). https://doi.org/10.1080/00325481.2022.2058285
    Article CAS PubMed Google Scholar
  31. G.C. Farrell, V.W. Wong, S. Chitturi, NAFLD in Asia–as common and important as in the West. Nat. Rev. Gastroenterol. Hepatol. 10(5), 307–318 (2013). https://doi.org/10.1038/nrgastro.2013.34
    Article CAS PubMed Google Scholar
  32. A.S. Butt, S. Hamid, Z. Haider, F. Sharif, M. Salih, S. Awan, A.A. Khan, J. Akhter, Nonalcoholic fatty liver diseases among recently diagnosed patients with diabetes mellitus and risk factors. Euroasian J. Hepatogastroenterol 9(1), 9–13 (2019). https://doi.org/10.5005/jp-journals-10018-1288
    Article PubMed PubMed Central Google Scholar
  33. F. Wang, R. Zheng, L. Li, M. Xu, J. Lu, Z. Zhao, M. Li, T. Wang, S. Wang, Y. Bi, Y. Xu, G. Ning, W. Cai, Novel subgroups and chronic complications of diabetes in middle-aged and elderly chinese:a prospective cohort study. Front. Endocrinol. 12, 802114 (2022). https://doi.org/10.3389/fendo.2021.802114
    Article Google Scholar
  34. J. Zeng, L. Qin, Q. Jin, R.X. Yang, G. Ning, Q. Su, Z. Yang, J.G. Fan, Prevalence and characteristics of MAFLD in Chinese adults aged 40 years or older: a community-based study. Hepatobiliary Pancreat. Dis. Int. 21(2), 154–161 (2022). https://doi.org/10.1016/j.hbpd.2022.01.006
    Article PubMed Google Scholar
  35. C. Lanbenz, K. Kostev, A. Armandi, P.R. Galle, J.M. Schattenberg, Impact of thyroid disorders on the incidence of non‐alcoholic fatty liver disease in Germany. U. Eur. Gastroenterol. J. 9(7), 829–836 (2021). https://doi.org/10.1002/ueg2.12124
    Article CAS Google Scholar
  36. Z. Guo, M. Li, B. Han, X. Qi, Association of non-alcoholic fatty liver disease with thyroid function: a systematic review and meta-analysis. Dig. Liver Dis. 50(11), 1153–1162 (2018). https://doi.org/10.1016/j.dld.2018.08.012
    Article CAS PubMed Google Scholar
  37. T. Kizivat, I. Maric, D. Mudri, I.B. Curcic, D. Primorac, M. Smolic, Hypothyroidism and nonalcoholic fatty liver disease: pathophysiological associations and therapeutic implications. J. Clin. Transl. Hepatol. 8(3), 347–353 (2020). https://doi.org/10.14218/JCTH.2020.00027
    Article PubMed PubMed Central Google Scholar
  38. Y. Gu, X. Wu, Q. Zhang, L. Liu, G. Meng, H. Wu, S. Zhang, Y. Wang, T. Zhang, X. Wang, S. Sun, X. Wang, M. Zhou, Q. Jia, K. Song, K. Niu, High-normal thyroid function predicts incident nonalcoholic fatty liver disease among middle-aged and older euthyroid subjects. J. Gerontol. A. Biol. Sci. Med. Sci. 77(1), 197–203 (2022). https://doi.org/10.1093/gerona/glab037
    Article CAS PubMed Google Scholar
  39. D. Ma, J. Zeng, B. Huang, F. Yan, J. Ye, Y. Chen, X. Zeng, X. Zheng, F. Xiao, M. Lin, C. Liu, Z. Li, Independent associations of thyroid-related hormones with hepatic steatosis and insulin resistance in euthyroid overweight/obese Chinese adults. BMC Gastroenterol. 21(1), 431 (2021). https://doi.org/10.1186/s12876-021-02011-0
    Article CAS PubMed PubMed Central Google Scholar
  40. Y. Liu, W. Wang, X. Yu, X. Qi, Thyroid function and risk of non-alcoholic fatty liver disease in euthyroid subjects. Ann. Hepatol. 17(5), 779–788 (2018). https://doi.org/10.5604/01.3001.0012.3136
    Article CAS PubMed Google Scholar
  41. Y. Zhang, J. Li, H. Liu, Correlation between the thyroid hormone levels and nonalcoholic fatty liver disease in type 2 diabetic patients with normal thyroid function. BMC Endocr. Disord. 22(1), 144 (2022). https://doi.org/10.1186/s12902-022-01050-2
    Article CAS PubMed PubMed Central Google Scholar
  42. J. Du, S. Chai, X. Zhao, J. Sun, X. Zhang, L. Huo, Association between thyroid hormone levels and advanced liver fibrosis in patients with type 2 diabetes mellitus and non-alcoholic fatty liver disease. Diabetes Metab. Syndr. Obes. 14, 2399–2406 (2021). https://doi.org/10.2147/DMSO.S313503
    Article PubMed PubMed Central Google Scholar
  43. W. Guo, P. Qin, X. Li, J. Wu, J. Lu, W. Zhu, Q. Diao, N. Xu, Q. Zhang, Free triiodothyronine is associated with hepatic steatosis and liver stiffness in euthyroid chinese adults with non-alcoholic fatty liver disease. Front. Endocrinol. 12, 711956 (2021). https://doi.org/10.3389/fendo.2021.711956
    Article Google Scholar
  44. C. Xu, L. Xu, C. Yu, M. Miao, Y. Li, Association between thyroid function and nonalcoholic fatty liver disease in euthyroid elderly Chinese. Clin. Endocrinol. 75(2), 240–246 (2011). https://doi.org/10.1111/j.1365-2265.2011.04016.x
    Article CAS Google Scholar
  45. K. Tahara, T. Akahane, T. Namisaki et al. Thyroid-Stimulating hormone is an independent risk factor of non-alcoholic fatty liver disease. JGH Open 4(3), 400–404 (2019). https://doi.org/10.1002/jgh3.12264
    Article PubMed PubMed Central Google Scholar
  46. Y. Tan, X. Tang, P. Mu, Y. Yang, M. Li, Y. Nie, H. Li, Y. Zhu, Y. Chen, High-normal serum thyrotropin levels increased the risk of non-alcoholic fatty liver disease in euthyroid subjects with type 2 diabetes. Diabetes Metab. Syndr. Obes. 14, 2841–2849 (2021). https://doi.org/10.2147/DMSO.S313224
    Article PubMed PubMed Central Google Scholar
  47. C. Janovsky, F. Cesena, V. Valente, R. Conceição, R. Santos, M. Bittencourt, Association between thyroid-stimulating hormone levels and non-alcoholic fatty liver disease is not independent from metabolic syndrome criteria. Eur. Thyroid J. 7(6), 302–307 (2018). https://doi.org/10.1159/000492324
    Article CAS PubMed PubMed Central Google Scholar
  48. E.H. van den Berg, L.J. van Tienhoven-Wind, M. Amini, T.C. Schreuder, K.N. Faber, H. Blokzijl, R.P. Dullaart, Higher free triiodothyronine is associated with nonAlcoholic fatty liver disease in euthyroid subjects: the Lifelines Cohort Study. Metabolism 67, 62–71 (2017). https://doi.org/10.1016/j.metabol.2016.11.002
    Article CAS PubMed Google Scholar
  49. M. Ekstedt, H. Hagström, P. Nasr, M. Fredrikson, P. Stål, S. Kechagias, R. Hultcrantz, Fibrosis stage is the strongest predictor for disease-specific mortality in NAFLD after up to 33 years of follow-up. Hepatology 61(5), 1547–1554 (2015). https://doi.org/10.1002/hep.27368
    Article CAS PubMed Google Scholar
  50. K. Cusi, A diabetologist’s perspective of non-alcoholic steatohepatitis (NASH): knowledge gaps and future directions. Liver Int 40(Suppl 1), 82–88 (2020). https://doi.org/10.1111/liv.14350
    Article PubMed Google Scholar
  51. Y. Xing, J. Chen, J. Liu, G. Song, H. Ma, Relationship between serum uric acid-to-creatinine ratio and the risk of metabolic-associated fatty liver disease in patients with type 2 diabetes mellitus. Diabetes Metab. Syndr. Obes. 15, 257–267 (2022). https://doi.org/10.2147/DMSO.S350468
    Article CAS PubMed PubMed Central Google Scholar
  52. G.P. Martínez-Escudé Alba, A. Costa-Garrido, L. Rodríguez, I. Arteaga, C. Expósito-Martínez, P. Torán-Monserrat, L. Caballería, TSH levels as an independent risk factor for NAFLD and liver fibrosis in the general population. J. Clin. Med. 10(13), 2907 (2021). https://doi.org/10.3390/jcm10132907
    Article CAS PubMed PubMed Central Google Scholar
  53. D. Kim, E.R. Yoo, A.A. Li, C.T. Fernandes, S.P. Tighe, G. Cholankeril, B. Hameed, A. Ahmed, Low-normal thyroid function is associated with advanced fibrosis among adults in the United States. Clin. Gastroenterol. Hepatol. 17(11), 2379–2381 (2019). https://doi.org/10.1016/j.cgh.2018.11.024
    Article PubMed Google Scholar
  54. A. Martínez-Escudé, G. Pera, L. Rodríguez, I. Arteaga, C. Expósito-Martínez, P. Torán-Monserrat, L. Caballería, Risk of liver fibrosis according to TSH levels in euthyroid subjects. J. Clin. Med. 10(7), 1350 (2021). https://doi.org/10.3390/jcm10071350
    Article CAS PubMed PubMed Central Google Scholar
  55. C. Shao, Q. Cheng, S. Zhang, X. Xiang, Y. Xu, Serum level of free thyroxine is an independent risk factor for non-alcoholic fatty liver disease in euthyroid people. Ann. Palliat. Med. 11(2), 655–662 (2022). https://doi.org/10.21037/apm-21-3890
    Article PubMed Google Scholar
  56. P. Manka, L. Bechmann, J. Best et al. Low free triiodothyronine is associated with advanced fibrosis in patients at high risk for nonalcoholic steatohepatitis. Dig. Dis. Sci. 64(8), 2351–2358 (2019). https://doi.org/10.1007/s10620-019-05687-3
    Article CAS PubMed Google Scholar
  57. H.J. Kim, S.J. Park, H.K. Park, D.W. Byn, K. Suh, M.H. Yoo, Association of thyroid autoimmunity with nonalcoholic fatty liver disease in euthyroid middle-aged subjects: A population-based study. J. Gastroenterol. Hepatol. 37(8), 1617–1623 (2022). https://doi.org/10.1111/jgh.15865
    Article CAS PubMed Google Scholar
  58. R. Naguib, A. Fayed, E.Z. Zlkemary, H. Naguib, Evaluation of thyroid function and thyroid autoimmune disease in patients with non-alcoholic fatty liver disease. Clin. Exp. Hepatol. 7(4), 422–428 (2021). https://doi.org/10.5114/ceh.2021.111169
    Article PubMed PubMed Central Google Scholar
  59. X. Zhang, R. Li, Y. Chen, Y. Dai, L. Chen, L. Qin, X. Cheng, Y. Lu, The role of thyroid hormones and autoantibodies in metabolic dysfunction associated fatty liver disease: TGAB may be a potential protective factor. Front. Endocrinol. 11, 598836 (2020). https://doi.org/10.3389/fendo.2020.598836
    Article Google Scholar
  60. J.L. Wemeau, S. Espiard, V. Vlaeminck-Guillem, C. Jaffiol, Different grades of sensitivity to thyroid hormones. Bull. Acad. Natl Med 204(2), 186–197 (2020). https://doi.org/10.1016/j.banm.2019.12.005
    Article Google Scholar
  61. S.P. Alonso, S. Valdés, C. Maldonado-Araque, Thyroid hormone resistance index and mortality in euthyroid subjects: Di@bet.es study. Eur. J. Endocrinol. 186(1), 95–103 (2021). https://doi.org/10.1530/EJE-21-0640
    Article PubMed Google Scholar
  62. Z.M. Liu, G. Li, Y. Wu, D. Zhang, S. Zhang, Y.T. Hao, W. Chen, Q. Huang, S. Li, Y. Xie, M. Ye, C. He, P. Chen, W. Pan, Increased central and peripheral thyroid resistance indices during the first half of gestation were associated with lowered risk of gestational diabetes-analyses based on huizhou birth cohort in South China. Front. Endocrinol. 13, 806256 (2022). https://doi.org/10.3389/fendo.2022.806256
    Article Google Scholar
  63. L. Mehran, N. Delbari, A. Amouzegar, M. Hasheminia, M. Tohidi, F. Azizi, Reduced sensitivity to thyroid hormone is associated with diabetes and hypertension. J. Clin. Endocrinol. Metab. 107(1), 167–176 (2022). https://doi.org/10.1210/clinem/dgab646
    Article PubMed Google Scholar
  64. Y. Wang, D. He, C. Fu, X. Dong, F. Jiang, M. Su, Q. Xu, P. Huang, N. Wang, Y. Chen, Q. Jiang, Thyroid Function Changes and Pubertal Progress in Females: A Longitudinal Study in Iodine-Sufficient Areas of East China. Front. Endocrinol. (Lausanne) 12, 653680 (2021). https://doi.org/10.3389/fendo.2021.653680
    Article PubMed Google Scholar
  65. R. Li, L. Zhou, C. Chen, X. Han, M. Gao, X. Cheng, J. Li, Sensitivity to thyroid hormones is associated with advanced fibrosis in euthyroid patients with non-alcoholic fatty liver disease: A cross-sectional study. Dig. Liver Dis. S1590-8658(22), 00560–00566 (2022). https://doi.org/10.1016/j.dld.2022.06.021
    Article CAS Google Scholar
  66. X. Nie, Y. Xu, X. Ma, Y. Xiao, Y. Wang, Y. Bao, Association between abdominal fat distribution and free triiodothyronine in a euthyroid population. Obes. Facts. 13(3), 358–366 (2020). https://doi.org/10.1159/000507709
    Article CAS PubMed PubMed Central Google Scholar
  67. D. Urrunaga-Pastor, M. Guarnizo-Poma, E. Moncada-Mapelli et al. High free triiodothyronine and free-triiodothyronine-to-free-thyroxine ratio levels are associated with metabolic syndrome in a euthyroid population. Diabetes Metab. Syndr. 12(2), 155–161 (2018). https://doi.org/10.1016/j.dsx.2017.12.003
    Article PubMed Google Scholar
  68. H. Bilgin, Ö. Pirgon, Thyroid function in obese children with non-alcoholic fatty liver disease. J. Clin. Res. Pediatr. Endocrinol. 6(3), 152–157 (2014). https://doi.org/10.4274/Jcrpe.1488
    Article PubMed PubMed Central Google Scholar
  69. F.Y. Gökmen, S. Ahbab, H.E. Ataoğlu, B.C. Türker, F. Çetin, F. Türker, R.Y. Mamaç, M. Yenigün, FT3/FT4 ratio predicts non-alcoholic fatty liver disease independent of metabolic parameters in patients with euthyroidism and hypothyroidism. Clinics 71(4), 221–225 (2016). https://doi.org/10.6061/clinics/2016(04)08
    Article PubMed PubMed Central Google Scholar
  70. S.M.M. Hussein, R.M. AbdElmageed, The relationship between type 2 diabetes mellitus and related thyroid diseases. Cureus 13(12), e20697 (2021). https://doi.org/10.7759/cureus.20697
    Article Google Scholar
  71. D. Ma, J. Zeng, B. Huang et al. Independent associations of thyroid-related hormones with hepatic steatosis and insulin resistance in euthyroid overweight/obese Chinese adults. BMC Gastroenterol. 21(1), 431 (2021). https://doi.org/10.1186/s12876-021-02011-0
    Article CAS PubMed PubMed Central Google Scholar
  72. S. Temizkan, B. Balaforlou, A. Ozderya et al. Effects of thyrotrophin, thyroid hormones and thyroid antibodies on metabolic parameters in a euthyroid population with obesity. Clin. Endocrinol. 85(4), 616–623 (2016). https://doi.org/10.1111/cen.13095
    Article CAS Google Scholar
  73. A.H. Khassawneh, A. Al-Mistarehi, A.M.Z. Alaabdin et al. Prevalence and predictors of thyroid dysfunction among type 2 diabetic patients: a case-control study. Int. J. Gen. Med 13, 803–816 (2020). https://doi.org/10.2147/IJGM.S273900
    Article PubMed PubMed Central Google Scholar
  74. K. Qin, F. Zhang, Q. Wu et al. Thyroid hormone changes in euthyroid patients with diabetes. Diabetes Metab. Syndr. Obes. 13, 2533–2540 (2020). https://doi.org/10.2147/DMSO.S260039
    Article CAS PubMed PubMed Central Google Scholar
  75. L. Mehran, A. Amouzegar, M. Tohidi, M. Moayedi, F. Azizi, Serum free thyroxine concentration is associated with metabolic syndrome in euthyroid subjects. Thyroid 24(11), 1566–1574 (2014). https://doi.org/10.1089/thy.2014.0103
    Article CAS PubMed Google Scholar
  76. Q. Han, J. Zhang, Y. Wang et al. Thyroid hormones and diabetic nephropathy: an essential relationship to recognize. Nephrology 24(2), 160–169 (2019). https://doi.org/10.1111/nep.13388
    Article CAS PubMed Google Scholar
  77. Y. Li, M. Yi, X. Deng, W. Li, Y. Chen, X. Zhang, Evaluation of the thyroid characteristics and correlated factors in hospitalized patients with newly diagnosed type 2 diabetes. Diabetes Metab. Syndr. Obes. 15, 873–884 (2022). https://doi.org/10.2147/DMSO.S355727
    Article CAS PubMed PubMed Central Google Scholar
  78. A.N. Hollenberg, The role of the thyrotropinreleasing hormone (TRH) neuron as a metabolic sensor. Thyroid 18(2), 131–139 (2008). https://doi.org/10.1089/thy.2007.0251
    Article CAS PubMed Google Scholar
  79. A. de Moura Souza, R. Sichieri, Association between serum TSH concentration within the normal range and adiposity. Eur. J. Endocrinol. 165(1), 11–15 (2011). https://doi.org/10.1530/EJE-11-0261
    Article CAS PubMed Google Scholar
  80. I.P. Carneiro, S.A. Elliott, M. Siervo, R. Padwal, S. Bertoli, A. Battezzati, C.M. Prado, Is obesity associated with altered energy expenditure? Adv. Nutr. 7(3), 476–487 (2016). https://doi.org/10.3945/an.115.008755
    Article CAS PubMed PubMed Central Google Scholar
  81. M.K. Amin, A.I. Ali, H. Elsayed, Impact of weight reduction on thyroid function and nonalcoholic fatty liver among egyptian adolescents with obesity. Int. J. Endocrinol. 2022, 7738328 (2022). https://doi.org/10.1155/2022/7738328
    Article CAS PubMed PubMed Central Google Scholar
  82. P. Juiz-Valiña, M. Cordido, E. Outeiriño-Blanco, S. Pértega, B.M. Varela-Rodríguez, M.J. García-Brao, E. Mena, L. Pena-Bello, S. Sangiao-Alvarellos, F. Cordido, Central resistance to thyroid hormones in morbidly obese subjects is reversed after bariatric surgery-induced weight loss. J. Clin. Med. 9(2), 359 (2020). https://doi.org/10.3390/jcm9020359
    Article CAS PubMed PubMed Central Google Scholar
  83. Z. Zhang, A. Boelen, P.H. Bisschop, A. Kalsbeek, E. Fliers, Hypothalamic effects of thyroid hormone. Mol. Cell. Endocrinol. 458, 143–148 (2017). https://doi.org/10.1016/j.mce.2017.01.018
    Article CAS PubMed Google Scholar
  84. E.E. Powell, V.W. Wong, M. Rinella, Non-alcoholic fatty liver disease. Lancet 397(10290), 2212–2224 (2021). https://doi.org/10.1016/S0140-6736(20)32511-3
    Article CAS PubMed Google Scholar

Download references