Interoperability of Neuroscience Modeling Software: Current Status and Future Directions (original) (raw)
References
Baxter, S. M., Day, S. W., Fetrow, J. S., & Reisinger, S. J. (2006). Scientific software development is not an oxymoron. PLoS Comput Biol, 2, e87. ArticlePubMedCAS Google Scholar
Bednar, J. A., Choe, Y., De Paula, J., Miikkulainen, R., Provost, J., & Tversky, T. (2003). Modeling cortical maps with topographica. Neurocomputing, 58, 1129–1135. Article Google Scholar
Bhalla, U. S. (2001). Modeling networks of signaling pathways. In E. De Schutter (Ed.), Computational neuroscience: Realistic modeling for experimentalists (pp. 25–48). Boca Raton: CRC. Google Scholar
Bower, J. M., & Beeman, D. (1998). The book of Genesis: Exploring realistic neural models with the GEneral NEural SImulation System (2nd ed.). New York: Springer. Google Scholar
Brette, R., Rudolph, M., Carnevale, T., Hines, M., Beeman, D., Bower, J. M., et al. (2007) Simulation of networks of spiking neurons: A review of tools and strategies. http://arxiv.org/abs/q-bio.NC/0611089.
Brunel, N., & Wang, X.-J. (2001). Effects of neuromodulation in a cortical network model of object working memory dominated by recurrent inhibition. Journal of Computational Neuroscience, 11, 63–85. ArticlePubMedCAS Google Scholar
Cannon, R. C., Hasselmo, M. E., & Koene, R. A. (2003) From biophysics to behavior: Catacomb2 and the design of biologically plausible models for spatial navigation. Neuroinformatics, 1, 3–42. ArticlePubMed Google Scholar
Carnevale, N. T., & Hines, M. L. (2006). The NEURON book. UK: Cambridge University Press. Google Scholar
Crook, S., Beeman, D., Gleeson, P., & Howell, F. (2005). XML for model specification in neuroscience: An introduction and workshop summary. Brains, Minds, and Media, 1, bmm228 (urn:nbn:de:0009-3-2282). Google Scholar
Crook, S., Gleeson, P., Howell, F., Svitak, J., & Silver, R. A. (2007). MorphML: Level 1 of the NeuroML standards for neuronal morphology data and model specification. Neuroinformatics, 5, (In press).
Cuellar, A. A., Lloyd, C. M., Nielsen, P. F., Bullivant, D. P., Nickerson, D. P., & Hunter, P. J. (2003). An overview of CellML 1.1, a biological model description language. Simulation, 79, 740–747. Article Google Scholar
De Schutter, E., & Beeman, D. (1998). Speeding up GENESIS simulations. In J. M. Bower & D. Beeman (Eds.), The book of GENESIS: Exploring realistic neural models with the GEneral NEural SImulation System (2nd ed., pp. 329–347). Springer New York: Telos. Google Scholar
De Schutter, E., & Bower, J. M. (1994). An active membrane model of the cerebellar Purkinje-cell .2. Simulation of synaptic responses. Journal of Neurophysiology, 71, 401–419. PubMed Google Scholar
De Schutter, E., Ekeberg, Ö., Kotaleski, J. H., Achard, P., & Lansner, A. (2005). Biophysically detailed modelling of microcircuits and beyond. Trends in Neurosciences, 28, 562–569. ArticlePubMedCAS Google Scholar
Diesmann, M., & Gewaltig, M.-O. (2002). NEST: An environment for neural systems simulations in Forschung und wissenschaftliches Rechnen, GWDG-Bericht (pp 43–70). In T. Plesser & V. Macho (Eds.). Göttingen (D): Ges. fuer Wissenschaftliche Datenverarbeitung.
Gardner, D., Toga, A. W., Ascoli, G. A., Beatty, J., Brinkley, J. F., Dale, A. M., et al. (2003). Towards effective and rewarding data sharing. Neuroinformatics, 3, 286–289. Google Scholar
Goddard, N. H., Beeman, D., Cannon, R. C., Cornelis, H., Gewaltig, M.-O., Hood, G., et al. (2002). NeuroML for plug and play neuronal modeling. Neurocomputing, 44, 1077–1081. Article Google Scholar
Goddard, N., Hood, G., Howell, F., Hines, M., & De Schutter, E. (2001). NEOSIM: Portable large-scale plug and play modelling. Neurocomputing, 38, 1657–1661. Article Google Scholar
Hille, B. (2001). Ionic channels of excitable membranes. Sunderland, MA: Sinauer Associates INC. Google Scholar
Hines, M. L., & Carnevale, N. T. (1997). The NEURON simulation environment. Neural Computation, 9, 1179–1209. ArticlePubMedCAS Google Scholar
Hines, M. L., & Carnevale, N. T. (2000). Expanding NEURON’s repertoire of mechanisms with NMODL. Neural Computation, 12, 995–1007. ArticlePubMedCAS Google Scholar
Hucka, M., Finney, A., Sauro, H. M., Bolouri, H., Doyle, J. C., Kitano, H., et al. (2003). The systems biology markup language (SBML): A medium for representation and exchange of biochemical network models. Bioinformatics, 19, 524–531. DOI 10.1093/bioinformatics/btg015. ArticlePubMedCAS Google Scholar
Koslow, S. H. (2002). Sharing primary data: A threat or asset to discovery? Nature reviews. Neuroscience, 3, 311–313. ArticlePubMedCAS Google Scholar
Kötter, R., Nielse, P., Dyhrfjeld-Johnsen, J., Sommer, F. T., & Northoff, G. (2002). Multi-level neuron and network modeling in computational neuroanatomy. In G. Ascoli (Ed.), Computational neuroanatomy: Principles and methods. Totowa, NJ: Humana. Google Scholar
Le Novere, N., Bornstein, B., Broicher, A., Courtot, M., Donizelli, M., Dharuri, H., et al. (2006). BioModels database: A free, centralized database of curated, published, quantitative kinetic models of biochemical and cellular systems. Nucleic Acids Research, 34, D689–D691. DOI 10.1093/nar/gkj092. ArticlePubMedCAS Google Scholar
Lloyd, W. J. (1994). Practical advantages of declarative programming. In Proc. Joint Conference on Declarative Programming, GULP-PRODE.
Migliore, M., Morse, T. M., Davison, A. P., Marenco, L., Shepherd, G. M., Hines, M. L., et al. (2003). ModelDB: Making models publicly accessible to support computational neuroscience. Neuroinformatics, 1, 135–139. ArticlePubMed Google Scholar
Roth, A., Nusser, Z., & Häusser, M. (2000). Monte Carlo simulations of synaptic transmission in detailed three-dimensional reconstructions of cerebellar neuropil. European Journal of Neuroscience, 12(Suppl. 11), 14. Google Scholar
Schwab, M., Karrenbach, M., & Claerbout, J. (2000). Making scientific computations reproducible. Computing in Science & Engineering, 2, 61–67. Article Google Scholar
Stiles, J. R., & Bartol, T. M. (2001). Methods for simulating realistic synaptic microphysiology using MCell. In E. De Schutter (Ed.), Computational neuroscience: Realistic modeling for experimentalists (pp. 87–127). Boca Raton: CRC. Google Scholar
Traub, R. D., Contreras, D., Cunningham, M. O., Murray, H., LeBeau, F. E. N., Roopun, A., et al. (2005). Single-column thalamocortical network model exhibiting gamma oscillations, sleep spindles and epileptogenic bursts. Journal of Neurophysiology, 93, 2194–2232. ArticlePubMed Google Scholar
Traub, R. D., Jefferys, J. G. R., Miles, R., Whittington, M. A., & Toth, K. (1994). A branching dendritic model of a rodent CA3 pyramidal neuron. Journal of Physiology (London. Print), 481, 7995. Google Scholar
Vandenberg, C. A., & Bezanilla, F. (1991). A sodium-channel gating model based on single channel, macroscopic ionic, and gating currents in the squid giant-axon. Biophysical Journal, 60, 1511–1533. ArticlePubMedCAS Google Scholar