Characterization of the Functional and Growth Properties of Cell Lines Established from Ileal and Rectal Carcinoid Tumors (original) (raw)

References

  1. Oberg K. Carcinoid tumors: molecular genetics, tumor biology, and update of diagnosis and treatment. Curr Opin Oncol 14:38–45, 2002.
    Article CAS PubMed Google Scholar
  2. Modlin IM, Kidd M, Latich I, Zikusoka MN, Shapiro MD. Current status of gastrointestinal carcinoids. Gastroenterology 128:1717–51, 2005.
    Article PubMed Google Scholar
  3. Rorstad O. Prognostic indicators for carcinoid neuroendocrine tumors of the gastrointestinal tract. J Surg Oncol 89:151–60, 2005.
    Article PubMed Google Scholar
  4. Evers BM, Townsend CM Jr, Upp JR, Allen E, Hurlbut SC, Kim SW, et al. Establishment and characterization of a human carcinoid in nude mice and effect of various agents on tumor growth. Gastroenterology 101:303–11, 1991.
    CAS PubMed Google Scholar
  5. Pfranger R, Wirnsberger G, Niederle B, Behmel A, Rinner I, Mandl A, et al. Establishment of a continuous cell line from a human carcinoid of the small intestine (KRJ-1): characterization and effects of a 5-azacytidine on proliferation. Int J Oncol 8:513–20, 1996.
    Google Scholar
  6. Takahashi Y, Onda M, Tanaka N, Seya T. Establishment and characterization of two new rectal neuroendocrine cell carcinoma cell lines. Digestion 62:262–70, 2000.
    Article CAS PubMed Google Scholar
  7. Ahlund L, Nilsson O, Kling-Petersen T, Wigander A, Theodorsson E, Dahlstrom A, et al. Serotonin-producing carcinoid tumour cells in long-term culture. Studies on serotonin release and morphological features. Acta Oncol 28:341–6, 1989.
    Article CAS PubMed Google Scholar
  8. Modlin IM, Kidd M, Pfragner R, Eick GN, Champaneria MC. The functional characterization of normal and neoplastic human enterochromaffin cells. J Clin Endocrinol Metab 91:2340–8, 2006.
    Article CAS PubMed Google Scholar
  9. Galli G, Zonefrati R, Gozzini A, Mavilia C, Martineti V, Tognarini I, et al. Characterization of the functional and growth properties of long-term cell cultures established from a human somatostatinoma. Endocr Relat Cancer 13:79–93, 2006.
    Article CAS PubMed Google Scholar
  10. Kolby L, Wangberg B, Ahlman H, Tisell LE, Fjalling M, Forssell-Aronsson E, et al. Somatostatin receptor subtypes, octreotide scintigraphy, and clinical response to octreotide treatment in patients with neuroendocrine tumors. World J Surg 22:679–83, 1998.
    Article CAS PubMed Google Scholar
  11. Kolby L, Bernhardt P, Ahlman H, Wangberg B, Johanson V, Wigander A, et al. A transplantable human carcinoid as model for somatostatin receptor-mediated and amine transporter-mediated radionuclide uptake. Am J Pathol 158:745–55, 2001.
    CAS PubMed Google Scholar
  12. Kolby L, Bernhardt P, Johanson V, Schmitt A, Ahlman H, Forssell-Aronsson E, et al. Successful receptor-mediated radiation therapy of xenografted human midgut carcinoid tumour. Br J Cancer 93:1144–51, 2005.
    Article CAS PubMed Google Scholar
  13. Anthony LB, Martin W, Delbeke D, Sandler M. Somatostatin receptor imaging: predictive and prognostic considerations. Digestion 57 Suppl 1:50–3, 1996.
    Article CAS PubMed Google Scholar
  14. Janson ET, Gobl A, Kalkner KM, Oberg K. A comparison between the efficacy of somatostatin receptor scintigraphy and that of in situ hybridization for somatostatin receptor subtype 2 messenger RNA to predict therapeutic outcome in carcinoid patients. Cancer Res 56:2561–5, 1996.
    CAS PubMed Google Scholar
  15. Hopfner M, Sutter AP, Gerst B, Zeitz M, Scherubl H. A novel approach in the treatment of neuroendocrine gastrointestinal tumours. Targeting the epidermal growth factor receptor by gefitinib (ZD1839). Br J Cancer 89:1766–75, 2003.
    Article CAS PubMed Google Scholar
  16. Nilsson O, Wangberg B, McRae A, Dahlstrom A, Ahlman H. Growth factors and carcinoid tumours. Acta Oncol 32:115–24, 1993.
    Article CAS PubMed Google Scholar
  17. Oberg K. Expression of growth factors and their receptors in neuroendocrine gut and pancreatic tumors, and prognostic factors for survival. Ann N Y Acad Sci 733:46–55, 2005.
    Article Google Scholar
  18. Papouchado B, Erickson LA, Rohlinger AL, Hobday TJ, Erlichman C, Ames MM, et al. Epidermal growth factor receptor and activated epidermal growth factor receptor expression in gastrointestinal carcinoids and pancreatic endocrine carcinomas. Mod Path 18:1329–35, 2005.
    Article CAS Google Scholar
  19. Grotzinger C. Tumour biology of gastroenteropancreatic neuroendocrine tumours. Neuroendocrinology 80 Suppl 1:8–11, 2004.
    Article PubMed CAS Google Scholar
  20. Yao JC, Zhang JX, Rashid A, Yeung SC, Szklaruk J, Hess K, et al. Clinical and in vitro studies of imatinib in advanced carcinoid tumors. Clin Cancer Res 13:234–40, 2007.
    Article CAS PubMed Google Scholar
  21. Chaudhry A, Papanicolaou V, Oberg K, Heldin CH, Funa K. Expression of platelet-derived growth factor and its receptors in neuroendocrine tumors of the digestive system. Cancer Res 52:1006–12, 1992.
    CAS PubMed Google Scholar
  22. Jin L, Kulig EJ, Qian X, Scheithauer BW, Eberhardt NL, Lloyd RV. A human pituitary adenoma cell line proliferates and maintains some differentiated functions following expression of Sv40 large T-antigen. Endocr Pathol 9:169–84, 1998.
    Article CAS Google Scholar
  23. Van Doren K, Gluzman Y. Efficient transformation of human fibroblasts by adenovirus-simian virus 40 recombinants. Mol Cell Biol 4:1653–6, 1984.
    PubMed Google Scholar
  24. Ruebel KH, Leontovich AA, Jin L, Stilling GA, Zhang H, Qian X, et al. Patterns of gene expression in pituitary carcinomas and adenomas analyzed by high-density oligonucleotide arrays, reverse transcriptase-quantitative PCR, and protein expression. Endocrine 29:435–44, 2006.
    Article CAS PubMed Google Scholar
  25. Ruebel KH, Jin L, Qian X, Scheithauer BW, Kovacs K, Nakamura N, et al. Effects of DNA methylation on galectin-3 expression in pituitary tumors. Cancer Res 65:1136–40, 2005.
    Article CAS PubMed Google Scholar
  26. Moghal N, Sternberg PW. Multiple positive and negative regulators of signaling by the EGF-receptor. Curr Opin Cell Biol 11:190–6, 1999.
    Article CAS PubMed Google Scholar
  27. Janmaat ML, Kruyt FAE, Rodriguez JA, Giaccone G. Inhibition of the epidermal growth factor receptor induces apoptosis in A431 cells but not in non-small-cell lung cancer cell lines. Proc Am Assoc Cancer Res 43:A3901, 2002.
    Google Scholar
  28. Hobday TJ, Mahoney M, Erlichman C, Lloyd R, Kim G, Mulkerin D, et al. Preliminary results of a phase II trial of gefitinib in progressive metastatic neuroendocrine tumors (NET); a phase II consortium (P2C) study (Abstract 4083). J Clin Oncol 23 16S part 1:328s, 2005.
  29. Taupenot L, Harper KL, O’Connor DT. The chromogranin–secretogranin family. N Engl J Med 348:1134–49, 2003.
    Article CAS PubMed Google Scholar
  30. Feldman SA, Eiden LE. The chromogranins: their roles in secretion from neuroendocrine cells and as markers for neuroendocrine neoplasia. Endocr Pathol 14:3–23, 2003.
    Article CAS PubMed Google Scholar
  31. Kim T, Tao-Cheng JH, Eiden LE, Loh YP. Chromogranin A, an "on/off" switch controlling dense-core secretory granule biogenesis. Cell 106:499–509, 2001.
    Article CAS PubMed Google Scholar
  32. Huh YH, Jeon SH, Yoo SH. Chromogranin B-induced secretory granule biogenesis: comparison with the similar role of chromogranin A. J Biol Chem 278:40581–9, 2003.
    Article CAS PubMed Google Scholar
  33. Stilling GA, Bayliss JM, Jin L, Zhang H, Lloyd RV. Chromogranin A transcription and gene expression in Folliculostellate (TtT/GF) cells inhibit cell growth. Endocr Pathol 16:173–86, 2005.
    Article CAS PubMed Google Scholar
  34. Inomoto C, Umemura S, Egashira N, Minematsu T, Takekoshi S, Itoh Y, et al. Granulogenesis in non-neuroendocrine COS-7 cell induced by EGFP-tagged chromogranin a gene transfection: identical and distinct distribution of CgA and EGFP. J Histochem Cytochem 55:487–93, 2007.
    Article CAS PubMed Google Scholar
  35. Nakagawa K, Kawaura A, Kato S, Takeda E, Okano T. Metastatic growth of lung cancer cells is extremely reduced in Vitamin D receptor knockout mice. J Steroid Biochem Mol Biol 89–90:545–7, 2004.
    Article PubMed CAS Google Scholar
  36. Guzey M, Luo J, Getzenberg RH. Vitamin D3 modulated gene expression patterns in human primary normal and cancer prostate cells. J Cell Biochem 93:271–85, 2004.
    Article CAS PubMed Google Scholar
  37. Hussaini IM, Trotter C, Zhao Y, Abdel-Fattah R, Amos S, Xiao A, et al. Matrix metalloproteinase-9 is differentially expressed in nonfunctioning invasive and noninvasive pituitary adenomas and increases invasion in human pituitary adenoma cell line. Am J Pathol 170:356–65, 2007.
    Article CAS PubMed Google Scholar

Download references