Decoding of dopaminergic mesolimbic activity and depressive behavior (original) (raw)
References
Adell, A., & Artigas, F. (2004). The somatodendritic release of dopamine in the ventral tegmental area and its regulation by afferent transmitter systems. Neuroscience and Biobehavioral Reviews, 28, 415–431. ArticlePubMedCAS Google Scholar
Baker, G. L., Gollub, J. P., & Blackburn, J. A. (1996). Inverting chaos: Extracting system parameters from experimental data. Chaos, 6, 528–533. ArticlePubMed Google Scholar
Cervo, L., & Samanin, R. (1988). Repeated treatment with imipramine and amitriptyline reduced the immobility of rats in the swimming test by enhancing dopamine mechanisms in the nucleus accumbens. Journal of Pharmacy and Pharmacology, 40, 155–156. PubMedCAS Google Scholar
Cooper, D. C. (2002). The significance of action potential bursting in the brain reward circuit. Neurochemistry International, 41, 333–340. ArticlePubMedCAS Google Scholar
Di Mascio, M., Di Giovanni, G., Di Giovanni, M. V., & Esposito, E. (1999). Decreased chaos of midbrain dopaminergic neurons after serotonin deneration. Neuroscience, 92, 237–243. ArticlePubMed Google Scholar
Dremencov, E., Gispan-Herman, I., Rosenstein, M., Mendelman, A., Overstreet, D. H., Zohar, J., et al. (2004a). The serotonindopamine interaction is critical for fast-onset action of antidepressant treatment: In vivo studies in an animal model of depression. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 28, 141–147. ArticleCAS Google Scholar
Dremencov, E., Nahshoni, E., Levy, D., Mintz, M., Overstreet, D. H., Weizman, A., et al. (2004b). Dimensional complexity of the neuronal activity in a rat model of depression. Neuroreport, 15, 1983–1986. ArticlePubMedCAS Google Scholar
Dremencov, E., Newman, M. E., Kinor, N., Blatman-Jan, G., Schindler, C. J., Overstreet, D. H., et al. (2005). Hyperfunctionality of serotonin-2C receptor-mediated inhibition of accumbal dopamine release in an animal model of depression is reversed by antidepressant treatment. Neuropharmacology, 48, 34–42. ArticlePubMedCAS Google Scholar
Floresco, S. B., West, A. R., Ash, B., Moore, H., & Grace, A. A. (2003). Afferent modulation of dopamine neuron firing differentially regulates tonic and phasic dopamine transmission. Nature Neuroscience, 6, 968–973. ArticlePubMedCAS Google Scholar
Friedman, A., Dremencov, E., Crown, H., Levy, D., Mintz, M., Overstreet, D. H., et al. (2005). Variability of the mesolimbic neuronal activity in a rat model of depression. Neuroreport, 16, 513–516. ArticlePubMed Google Scholar
Grace, A. A. (1991). Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: A hypothesis for the etiology of schizophrenia. Neuroscience, 41, 1–24. ArticlePubMedCAS Google Scholar
Grace, A. A., & Bunney, B. S. (1984a). The control of firing pattern in nigral dopamine neurons: Burst firing. Journal of Neuroscience, 4, 2877–2890. PubMedCAS Google Scholar
Grace, A. A., & Bunney, B. S. (1984b). The control of firing pattern in nigral dopamine neurons: Single spike firing. Journal of Neuroscience, 4, 2866–2876. PubMedCAS Google Scholar
Grassberger, P., & Procaccia, I. (1983). Measuring the strangeness of strange attractors. Physica D, 9, 189–208. Article Google Scholar
Ikemoto, S., & Panksepp, J. (1999). The role of nucleus accumbens dopamine in motivated behavior: A unifying interpretation with special reference to reward-seeking. Brain Research: Brain Research Reviews, 31, 6–41. ArticlePubMedCAS Google Scholar
Kapur, S., & Mann, J. J. (1992). Role of the dopaminergic system in depression. Biological Psychiatry, 32, 1–17. ArticlePubMedCAS Google Scholar
Kitai, S. T., Shepard, P. D., Callaway, J. C., & Scroggs, R. (1999). Afferent modulation of dopamine neuron firing patterns. Current Opinion in Neurobiology, 9, 690–697. ArticlePubMedCAS Google Scholar
Lisman, J. E. (1997). Bursts as a unit of neural information: Making unreliable synapses reliable. Trends Neuroscience, 20, 38–43. ArticleCAS Google Scholar
Ordway, G. A., & Mann, J. J. (2002). Neurocircuitry of mood disorders. In K. L. Davis, J. T. Coyle, & C. Nemeroff (Eds.), Neuropsychopharmacology: The Fifth Generation of Progress (pp. 1051–1064). Lippincott Williams & Wilkins: Philadelphia. Google Scholar
Overstreet D. H. (1993). The Flinders Sensitive Line rats: A genetic animal model of depression. Neuroscience and Biobehavioral Reviews, 17(1), 51–68 PMID: 8455816 [PubMed — indexed for Medline]. ArticlePubMedCAS Google Scholar
Overstreet, D. H., Friedman, E., Mathe, A. A., & Yadid, G. (2005). The Flinders Sensitive Line rat: A selectively bred putative animal model of depression. Neuroscience and Biobehavioral Reviews, 29, 739–759. ArticlePubMedCAS Google Scholar
Overstreet, D. H., Pucilowski, O., Rezvani, A. H., & Janowsky, D. S. (1995). Administration of antidepressants, diazepam and psychomotor stimulants further confirms the utility of Flinders Sensitive Line rats as an animal model of depression. Psychopharmacology (Berl), 121, 27–37. ArticleCAS Google Scholar
Reddy, P. L., Khanna, S., Subhash, M. N., Channabasavanna, S. M., & Rao, B. S. (1992). CSF amine metabolites in depression. Biological Psychiatry, 31, 112–118. ArticlePubMedCAS Google Scholar
Sarre, S., Yuan, H., Jonkers, N., Van Hemelrijck, A., Ebinger, G., & Michotte, Y. (2004). In vivo characterization of somatodendritic dopamine release in the substantia nigra of 6-hydroxydopamine-lesioned rats. Journal of Neurochemistry, 90, 29–39. ArticlePubMedCAS Google Scholar
Schultz, W. (1998). Predictive reward signal of dopamine neurons. Journal of Neurophysiology, 80, 1–27. PubMedCAS Google Scholar
Schultz, W., & Dickinson, A. (2000). Neuronal coding of prediction errors. Annual Review of Neuroscience, 23, 473–500. ArticlePubMedCAS Google Scholar
Schultz, W., Tremblay, L., & Hollerman, J. R. (2000). Reward processing in primate orbitofrontal cortex and basal ganglia. Cerebral Cortex, 10, 272–284. ArticlePubMedCAS Google Scholar
Steinmetz, P. N., Manwani, A., Koch, C., London, M., & Segev, I. (2000). Subthreshold voltage noise due to channel fluctuations in active neuronal membranes. Journal of Computational Neuroscience, 9, 133–148. ArticlePubMedCAS Google Scholar
Wang, R. Y. (1981). Dopaminergic-neurons in the rat ventral tegmental area. 1. Identification and characterization. Brain Research Reviews, 3, 123–140. ArticleCAS Google Scholar
Willner, P., Hale, A. S., & Argyropoulos, S. (2005). Dopaminergic mechanism of antidepressant action in depressed patients. Journal of Affective Disorders, 86, 37–45. ArticlePubMedCAS Google Scholar
Yadid, G., Nakash, R., Deri, I., Tamer, G., Kinor, N., Gispan, I., et al. (2000). Elucidation of the neurobiology of depression: Insights from a novel genetic animal model. Progress in Neurobiology, 62, 353–378. ArticlePubMedCAS Google Scholar
Zangen, A., Nakash, R., Overstreet, D. H., & Yadid, G. (2001). Association between depressive behavior and absence of serotonin-dopamine interaction in the nucleus accumbens. Psychopharmacology (Berl), 155, 434–439. ArticleCAS Google Scholar