The Regulatory Mechanism of Neurogenesis by IGF-1 in Adult Mice (original) (raw)
Chiasson BJ, Tropepe V, Morshead CM, van der Kooy D (1999) Adult mammalian forebrain ependymal and subependymal cells demonstrate proliferative potential, but only subependymal cells have neural stem cell characteristics. J Neurosci 19:4462–4471 CASPubMed Google Scholar
Loeffler M, Roeder I (2002) Tissue stem cells: definition, plasticity, heterogeneity, self-organization and models e a conceptual approach. Cells Tissues Organs 171:8–26 ArticlePubMed Google Scholar
Duman RS, Malberg J, Nakagawa S (2001) Regulation of adult neurogenesis by psychotropic drugs and stress. J Pharmacol Exp Ther 299:401–407 CASPubMed Google Scholar
Fuchs E, Gould E (2000) Mini-review: in vivo neurogenesis in the adult brain: regulation and functional implications. Eur J Neurosci 12:2211–2214 ArticleCASPubMed Google Scholar
Kempermann G (2002) Regulation of adult hippocampal neurogenesis implications for novel theories of major depression. Bipolar Disord 4:17–33 ArticlePubMed Google Scholar
Arvidsson A, Collin T, Kirik D, Kokaia Z, Lindvall O (2002) Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med 8:963–970 ArticleCASPubMed Google Scholar
Peng H, Whitney N, Wu Y, Tian C, Dou H, Zhou Y, Zheng J (2008) HIV-1-infected and/or immune-activated macrophage-secreted TNF-alpha affects human fetal cortical neural progenitor cell proliferation and differentiation. Glia 56:903–916 ArticlePubMed CentralPubMed Google Scholar
Grote HE, Hannan AJ (2007) Regulators of adult neurogenesis in the healthy and diseased brain. Clin Exp Pharmacol Physiol 34:533–545 ArticleCASPubMed Google Scholar
Gago N, Avellana-Adalid V, Evercooren AB, Schumacher M (2003) Control of cell survival and proliferation of postnatal PSA-NCAM(+) progenitors. Mol Cell Neurosci 22:162–178 ArticleCASPubMed Google Scholar
Zygar CA, Colbert S, Yang D, Fernald RD (2005) IGF-1 produced by cone photoreceptors regulates rod progenitor proliferation in the teleost retina. Brain Res Dev Brain Res 154:91–100 ArticleCASPubMed Google Scholar
Kouroupi G, Lavdas AA, Gaitanou M, Thomaidou D, Stylianopoulou F, Matsas R (2010) Lentivirus-mediated expression of insulin-like growth factor-1 promotes neural stem/precursor proliferation and enhances their potential to generate neurons. J Neurochem 115:460–474 ArticleCASPubMed Google Scholar
Isakoff SJ, Yu YP, Su YC, Blaikie P, Yajnik V, Rose E, Weidner KM, Sachs M, Margolis B, Skolnik EY (1996) Interaction between the phosphotyrosine binding domain of Shc and the insulin receptor is required for Shc phosphorylation by insulin in vivo. J Biol Chem 271:3959–3962 ArticleCASPubMed Google Scholar
Clemmons DR, Maile LA (2003) Minireview: integral membrane proteins that function coordinately with the insulin-like growth factor I receptor to regulate intracellular signaling. Endocrinology 144:1664–1670 ArticleCASPubMed Google Scholar
Dupont J, Pierre A, Froment P, Moreau C (2003) The insulin-like growth factor axis in cell cycle progression. Horm Metab Res 35:740–750 ArticleCASPubMed Google Scholar
Burgering BM, Coffer PJ (1995) Protein kinase B (c-Akt) in phosphatidylinositol-3-OH kinase signal transduction. Nature 376:599–602 ArticleCASPubMed Google Scholar
Franke TF, Yang SI, Chan TO, Datta K, Kazlauskas A, Morrison DK, Kaplan DR, Tsichlis PN (1995) The protein kinase encoded by the Akt protooncogene is a target of the PDGF-activated phosphatidylinositol 3-kinase. Cell 81:727–736 ArticleCASPubMed Google Scholar
Downward J (1998) Mechanisms and consequences of activation of protein kinase B/Akt. Curr Opin Cell Biol 10:262–267 ArticleCASPubMed Google Scholar
Supeno NE, Pati S, Hadi RA, Ghani AR, Mustafa Z, Abdullah JM, Idris FM, Han X, Jaafar H (2013) IGF-1 acts as controlling switch for long-term proliferation and maintenance of EGF/FGF-responsive striatal neural stem cells. Int J Med Sci 10:522–531 ArticlePubMed CentralCASPubMed Google Scholar
Choi YS, Cho HY, Hoyt KR, Naegele JR, Obrietan K (2008) IGF-1 Receptor-mediated ERK/MAPK signaling couples status epilepticus to progenitor cell proliferation in the subgranular layer of the dentate gyrus. GLIA 56:791–800 ArticlePubMed CentralPubMed Google Scholar
Kalluri HS, Vemuganti R, Dempsey RJ (2007) Mechanism of insulin-like growth factor I-mediated proliferation of adult neural progenitor cells: role of Akt. Eur J Neurosci 25:1041–1048 ArticlePubMed Google Scholar
Jin Z, Liu L, Bian W, Chen Y, Xu G, Cheng L, Jing N (2009) Different transcription factors regulate nestin gene expression during P19 cell neural differentiation and central nervous system development. J Biol Chem 284:8160–8173 ArticlePubMed CentralCASPubMed Google Scholar
Yuan H, Hu A, Zhang L, Zhu X (2012) Investigation of neural stem cell-specific regulatory promoter elements. Exp Ther Med 4:405–408 PubMed CentralCASPubMed Google Scholar
Rafalski VA, Brunet A (2011) Energy metabolism in adult neural stem cell fate. Prog Neurobiol 93:182–203 ArticleCASPubMed Google Scholar
Joseph D'Ercole A, Ye P (2008) Expanding the mind: insulin-like growth factor I and brain development. Endocrinology 149:5958–5962 ArticlePubMed CentralPubMed Google Scholar
Lunn JS, Pacut C, Backus C, Hong Y, Johe K, Hefferan M, Marsala M, Feldman EL (2010) The pleotrophic effects of insulin-like growth factor-I on human spinal cord neural progenitor cells. Stem Cells Dev 19:1–11 Article Google Scholar
Hodge RD, D’Ercole AJ, O’Kusky JR (2004) Insulin-like growth factor-I accelerates the cell cycle by decreasing G1 phase length and increases cell cycle reentry in the embryonic cerebral cortex. J Neurosci 24:10201–10210 ArticleCASPubMed Google Scholar
Stranahan AM, Arumugam TV, Cutler RG, Lee K, Egan JM, Mattson MP (2008) Diabetes impairs hippocampal function through glucocorticoid-mediated effects on new and mature neurons. Nat Neurosci 11:309–317 ArticlePubMed CentralCASPubMed Google Scholar
Ye P, Popken GJ, Kemper A, McCarthy K, Popko B, D’Ercole AJ (2004) Astrocyte specific overexpression of insulin-like growth factor-I promotes brain overgrowth and glial fibrillary acidic protein expression. J Neurosci Res 78:472–484 ArticleCASPubMed Google Scholar
Yang X, Wei A, Liu Y, He G, Zhou Z, Yu Z (2013) IGF-1 protects retinal ganglion cells from hypoxia-induced apoptosis by activating the Erk-1/2 and Akt pathways. Mol Vis 19:1901–1912 PubMed CentralCASPubMed Google Scholar
Yan YP, Sailor KA, Vemuganti R, Dempsey RJ (2006) Insulin-like growth factor-1 is an endogenous mediator of focal ischemia-induced neural progenitor proliferation. Eur J Neurosci 24:45–54 ArticlePubMed Google Scholar
Samuels IS, Karlo JC, Faruzzi AN, Pickering K, Herrup K, Sweatt JD, Saitta SC, Landreth GE (2008) Deletion of ERK2 mitogen-activated protein kinase identifies its key roles in cortical neurogenesis and cognitive function. J Neurosci 28:6983–6995 ArticleCASPubMed Google Scholar
Phoenix TN, Temple S (2010) Spred1, a negative regulator of Ras-MAPK-ERK, is enriched in CNS germinal zones, dampens NSC proliferation, and maintains ventricular zone structure. Genes Dev 24:45–46 ArticlePubMed CentralCASPubMed Google Scholar
Hu X, Jin L, Feng L (2004) Erk1/2 but not PI3K pathway is required for neurotrophin 3-induced oligodendrocyte differentiation of post-natal neural stem cells. J Neurochem 90:1339–1347 ArticleCASPubMed Google Scholar
Hu JG, Fu SL, Wang YX, Li Y, Jiang XY, Wang XF, Qiu MS, Lu PH, Xu XM (2008) Platelet-derived growth factor-AA mediates oligodendrocyte lineage differentiation through activation of extracellular signal-regulated kinase signaling pathway. Neuroscience 151:138–147 ArticleCASPubMed Google Scholar
Ma DK, Ponnusamy K, Song MR, Ming GL, Song H (2009) Molecular genetic analysis of FGFR1 signalling reveals distinct roles of MAPK and PLCgamma1 activation for self-renewal of adult neural stem cells. Mol Brain 2:16 ArticlePubMed CentralPubMed Google Scholar
Sato T, Shimazaki T, Naka H, Fukami S, Satoh Y, Okano H, Lax I, Schlessinger J, Gotoh N (2010) FRS2α regulates ERK levels to control a self-renewal target Hes1 and proliferation of FGF-responsive neural stem/progenitor cells. Stem Cells 28:1661–1673 ArticlePubMed CentralPubMed Google Scholar
Mairet-Coello G, Tury A, DiCicco-Bloom E (2009) Insulin-like growth factor-1 promotes G(1)/S cell cycle progression through bidirectional regulation of cyclins and cyclin-dependent kinase inhibitors via the phosphatidylinositol 3-kinase/Akt pathway in developing rat cerebral cortex. J Neurosci 29:775–788 ArticlePubMed CentralCASPubMed Google Scholar
Sinor AD, Lillien L (2004) Akt-1 expression level regulates CNS precursors. J Neurosci 24:8531–8541 ArticleCASPubMed Google Scholar
Chung H, Li E, Kim Y, Kim S, Park S (2013) Multiple signaling pathways mediate ghrelin-induced proliferation of hippocampal neural stem cells. J Endocrinol 218:49–59 ArticleCASPubMed Google Scholar
Peltier J, O’Neill A, Schaffer DV (2007) PI3K/Akt and CREB regulate adult neural hippocampal progenitor proliferation and differentiation. Dev Neurobiol 67:1348–1361 ArticleCASPubMed Google Scholar
Otaegi G, Yusta-Boyo MJ, Vergano-Vera E, Mendez-Gomez HR, Carrera AC, Abad JL, Gonzalez M, de la Rosa EJ, Vicario-Abejon C, de Pablo F (2006) Modulation of the PI3-kinase-Akt signaling pathway by IGF-I and PTEN regulates the differentiation of neural stem/precursor cells. J Cell Sci 119:2739–2748 ArticleCASPubMed Google Scholar
Mograbi B, Bocciardi R, Bourget I, Busca R, Rochet N, Farahi-Far D, Juhel T, Rossi B (2001) Glial cell line-derived neurotrophic factor-stimulated phosphatidylinositol 3-kinase and Akt activities exert opposing effects on the ERK pathway: importance for the rescue of neuroectodermic cells. J Biol Chem 276:45307–45319 ArticleCASPubMed Google Scholar
Reusch HP, Zimmermann S, Schaefer M, Paul M, Moelling K (2001) Regulation of Raf by Akt controls growth and differentiation in vascular smooth muscle cells. J Biol Chem 276:33630–33637 ArticleCASPubMed Google Scholar
Huang W, Zhao Y, Zhu X, Cai Z, Wang S, Yao S, Qi Z, Xie P (2013) Fluoxetine upregulates phosphorylated-AKT and phosphorylated-ERK1/2 proteins in neural stem cells: evidence for a crosstalk between AKT and ERK1/2 pathways. J Mol Neurosci 49:244–249 ArticleCASPubMed Google Scholar
Cui QL, Almazan G (2007) IGF-I-induced oligodendrocyte progenitor proliferation requires PI3K/Akt, MEK/ERK, and Src-like tyrosine kinases. J Neurochem 100:1480–1493 CASPubMed Google Scholar
Chan WS, Sideris A, Sutachan JJ, Montoya GJV, Blanck TJ, Recio-Pinto E (2013) Differential regulation of proliferation and neuronal differentiation in adult rat spinal cord neural stem/progenitors by ERK1/2, Akt, and PLCγ. Front Mol Neurosci 6:23 ArticlePubMed CentralPubMed Google Scholar