Fu Y, Hao J, Zhang N, Ren L, Sun N, Li YJ, Yan Y, Huang D et al (2014) Fingolimod for the treatment of intracerebral hemorrhage: a 2-arm proof-of-concept study. JAMA Neurol 71(9):1092–1101. doi:10.1001/jamaneurol.2014.1065 ArticlePubMed Google Scholar
Czech B, Pfeilschifter W, Mazaheri-Omrani N, Strobel MA, Kahles T, Neumann-Haefelin T, Rami A, Huwiler A et al (2009) The immunomodulatory sphingosine 1-phosphate analog FTY720 reduces lesion size and improves neurological outcome in a mouse model of cerebral ischemia. Biochem Biophys Res Commun 389(2):251–256. doi:10.1016/j.bbrc.2009.08.142 ArticleCASPubMed Google Scholar
Hasegawa Y, Suzuki H, Sozen T, Rolland W, Zhang JH (2010) Activation of sphingosine 1-phosphate receptor-1 by FTY720 is neuroprotective after ischemic stroke in rats. Stroke 41(2):368–374. doi:10.1161/STROKEAHA.109.568899 ArticleCASPubMed Google Scholar
Kraft P, Gob E, Schuhmann MK, Gobel K, Deppermann C, Thielmann I, Herrmann AM, Lorenz K et al (2013) FTY720 ameliorates acute ischemic stroke in mice by reducing thrombo-inflammation but not by direct neuroprotection. Stroke 44(11):3202–3210. doi:10.1161/STROKEAHA.113.002880 ArticleCASPubMed Google Scholar
Moon E, Han JE, Jeon S, Ryu JH, Choi JW, Chun J (2015) Exogenous S1P exposure potentiates ischemic stroke damage that is reduced possibly by inhibiting S1P receptor signaling. Mediat Inflamm 2015:492659. doi:10.1155/2015/492659 Article Google Scholar
Nazari M, Keshavarz S, Rafati A, Namavar MR, Haghani M (2016) Fingolimod (FTY720) improves hippocampal synaptic plasticity and memory deficit in rats following focal cerebral ischemia. Brain Res Bull 124:95–102. doi:10.1016/j.brainresbull.2016.04.004 ArticleCASPubMed Google Scholar
Shichita T, Sugiyama Y, Ooboshi H, Sugimori H, Nakagawa R, Takada I, Iwaki T, Okada Y et al (2009) Pivotal role of cerebral interleukin-17-producing gammadeltaT cells in the delayed phase of ischemic brain injury. Nat Med 15(8):946–950. doi:10.1038/nm.1999 ArticleCASPubMed Google Scholar
Wei Y, Yemisci M, Kim HH, Yung LM, Shin HK, Hwang SK, Guo S, Qin T et al (2011) Fingolimod provides long-term protection in rodent models of cerebral ischemia. Ann Neurol 69(1):119–129. doi:10.1002/ana.22186 ArticleCASPubMed Google Scholar
Awad AS (2006) Selective sphingosine 1-phosphate 1 receptor activation reduces ischemia-reperfusion injury in mouse kidney. Am J Physiol Renal Physiol 290(6):F1516–F1524. doi:10.1152/ajprenal.00311.2005 ArticleCASPubMed Google Scholar
Ham A, Kim M, Kim JY, Brown KM, Fruttiger M, D'Agati VD, Thomas Lee H (2013) Selective deletion of the endothelial sphingosine-1-phosphate 1 receptor exacerbates kidney ischemia–reperfusion injury. Kidney Int 85(4):807–823. doi:10.1038/ki.2013.345 ArticlePubMedPubMed Central Google Scholar
Lien YH, Yong KC, Cho C, Igarashi S, Lai LW (2006) S1P1-selective agonist, SEW2871, ameliorates ischemic acute renal failure. Kidney Int 69(9):1601–1608. doi:10.1038/sj.ki.5000360 ArticleCASPubMed Google Scholar
Hasegawa Y, Suzuki H, Altay O, Rolland W, Zhang JH (2013) Role of the sphingosine metabolism pathway on neurons against experimental cerebral ischemia in rats. Transl Stroke Res 4(5):524–532. doi:10.1007/s12975-013-0260-7 ArticleCASPubMed Google Scholar
Choi JW, Gardell SE, Herr DR, Rivera R, Lee CW, Noguchi K, Teo ST, Yung YC et al (2010) FTY720 (fingolimod) efficacy in an animal model of multiple sclerosis requires astrocyte sphingosine 1-phosphate receptor 1 (S1P1) modulation. Proc Natl Acad Sci U S A 108(2):751–756. doi:10.1073/pnas.1014154108 ArticlePubMedPubMed Central Google Scholar
Sun N, Shen Y, Han W, Shi K, Wood K, Fu Y, Hao J, Liu Q et al (2016) Selective sphingosine-1-phosphate receptor 1 modulation attenuates experimental intracerebral hemorrhage. Stroke 47(7):1899–1906. doi:10.1161/STROKEAHA.115.012236 ArticleCASPubMed Google Scholar
Oo ML, Thangada S, Wu MT, Liu CH, Macdonald TL, Lynch KR, Lin CY, Hla T (2007) Immunosuppressive and anti-angiogenic sphingosine 1-phosphate receptor-1 agonists induce ubiquitinylation and proteasomal degradation of the receptor. J Biol Chem 282(12):9082–9089. doi:10.1074/jbc.M610318200 ArticleCASPubMed Google Scholar
Nussbaum C, Bannenberg S, Keul P, Gräler MH, Gonçalves-de-Albuquerque CF, Korhonen H, von Wnuck LK, Heusch G et al (2015) Sphingosine-1-phosphate receptor 3 promotes leukocyte rolling by mobilizing endothelial P-selectin. Nat Commun 6:6416. doi:10.1038/ncomms7416 ArticleCASPubMedPubMed Central Google Scholar
Han JE, Lee EJ, Moon E, Ryu JH, Choi JW, Kim HS (2016) Matrix metalloproteinase-8 is a novel pathogenetic factor in focal cerebral ischemia. Mol Neurobiol 53(1):231–239. doi:10.1007/s12035-014-8996-y ArticleCASPubMed Google Scholar
Pan S, Mi Y, Pally C, Beerli C, Chen A, Guerini D, Hinterding K, Nuesslein-Hildesheim B et al (2006) A monoselective sphingosine-1-phosphate receptor-1 agonist prevents allograft rejection in a stringent rat heart transplantation model. Chem Biol 13(11):1227–1234. doi:10.1016/j.chembiol.2006.09.017 ArticleCASPubMed Google Scholar
Gaire BP, Kwon OW, Park SH, Chun KH, Kim SY, Shin DY, Choi JW (2015) Neuroprotective effect of 6-paradol in focal cerebral ischemia involves the attenuation of neuroinflammatory responses in activated microglia. PLoS One 10(3):e0120203. doi:10.1371/journal.pone.0120203 ArticlePubMedPubMed Central Google Scholar
Cho KS, Lee EJ, Kim JN, Choi JW, Kim HY, Han SH, Ryu JH, Cheong JH et al (2015) Proteinase 3 induces neuronal cell death through microglial activation. Neurochem Res 40(11):2242–2251. doi:10.1007/s11064-015-1714-y ArticleCASPubMed Google Scholar
Boscia F, Gala R, Pannaccione A, Secondo A, Scorziello A, Di Renzo G, Annunziato L (2009) NCX1 expression and functional activity increase in microglia invading the infarct core. Stroke 40(11):3608–3617. doi:10.1161/STROKEAHA.109.557439 ArticleCASPubMed Google Scholar
Ito D, Tanaka K, Suzuki S, Dembo T, Fukuuchi Y (2001) Enhanced expression of Iba1, ionized calcium-binding adapter molecule 1, after transient focal cerebral ischemia in rat brain. Stroke 32(5):1208–1215 ArticleCASPubMed Google Scholar
Chu HX, Kim HA, Lee S, Moore JP, Chan CT, Vinh A, Gelderblom M, Arumugam TV et al (2014) Immune cell infiltration in malignant middle cerebral artery infarction: comparison with transient cerebral ischemia. J Cereb Blood Flow Metab 34(3):450–459. doi:10.1038/jcbfm.2013.217 ArticleCASPubMed Google Scholar
Lindsberg PJ, Carpen O, Paetau A, Karjalainen-Lindsberg ML, Kaste M (1996) Endothelial ICAM-1 expression associated with inflammatory cell response in human ischemic stroke. Circulation 94(5):939–945 ArticleCASPubMed Google Scholar
Chiba K, Kataoka H, Seki N, Shimano K, Koyama M, Fukunari A, Sugahara K, Sugita T (2011) Fingolimod (FTY720), sphingosine 1-phosphate receptor modulator, shows superior efficacy as compared with interferon-beta in mouse experimental autoimmune encephalomyelitis. Int Immunopharmacol 11(3):366–372. doi:10.1016/j.intimp.2010.10.005 ArticleCASPubMed Google Scholar
Deogracias R, Yazdani M, Dekkers MP, Guy J, Ionescu MC, Vogt KE, Barde YA (2012) Fingolimod, a sphingosine-1 phosphate receptor modulator, increases BDNF levels and improves symptoms of a mouse model of Rett syndrome. Proc Natl Acad Sci U S A 109(35):14230–14235. doi:10.1073/pnas.1206093109 ArticleCASPubMedPubMed Central Google Scholar
O'Sullivan S, Dev KK (2016) Sphingosine-1-phosphate receptor therapies: advances in clinical trials for CNS-related diseases. Neuropharmacology. doi:10.1016/j.neuropharm.2016.11.006 Google Scholar
Foster CA, Howard LM, Schweitzer A, Persohn E, Hiestand PC, Balatoni B, Reuschel R, Beerli C et al (2007) Brain penetration of the oral immunomodulatory drug FTY720 and its phosphorylation in the central nervous system during experimental autoimmune encephalomyelitis: consequences for mode of action in multiple sclerosis. J Pharmacol Exp Ther 323(2):469–475. doi:10.1124/jpet.107.127183 ArticleCASPubMed Google Scholar
Galicia-Rosas G, Pikor N, Schwartz JA, Rojas O, Jian A, Summers-Deluca L, Ostrowski M, Nuesslein-Hildesheim B et al (2012) A sphingosine-1-phosphate receptor 1-directed agonist reduces central nervous system inflammation in a Plasmacytoid dendritic cell-dependent manner. J Immunol 189(7):3700–3706. doi:10.4049/jimmunol.1102261 ArticleCASPubMed Google Scholar
Nayak D, Huo Y, Kwang WXT, Pushparaj PN, Kumar SD, Ling EA, Dheen ST (2010) Sphingosine kinase 1 regulates the expression of proinflammatory cytokines and nitric oxide in activated microglia. Neuroscience 166(1):132–144. doi:10.1016/j.neuroscience.2009.12.020 ArticleCASPubMed Google Scholar
Gao F, Liu Y, Li X, Wang Y, Wei D, Jiang W (2012) Fingolimod (FTY720) inhibits neuroinflammation and attenuates spontaneous convulsions in lithium-pilocarpine induced status epilepticus in rat model. Pharmacol Biochem Behav 103(2):187–196. doi:10.1016/j.pbb.2012.08.025 ArticleCASPubMed Google Scholar
Sawano T, Watanabe F, Ishiguchi M, Doe N, Furuyama T, Inagaki S (2015) Effect of Sema4D on microglial function in middle cerebral artery occlusion mice. Glia 63(12):2249–2259. doi:10.1002/glia.22890 ArticlePubMed Google Scholar
Kanazawa H, Ohsawa K, Sasaki Y, Kohsaka S, Imai Y (2002) Macrophage/microglia-specific protein Iba1 enhances membrane ruffling and Rac activation via phospholipase C-gamma-dependent pathway. J Biol Chem 277(22):20026–20032. doi:10.1074/jbc.M109218200 ArticleCASPubMed Google Scholar
Li T, Pang S, Yu Y, Wu X, Guo J, Zhang S (2013) Proliferation of parenchymal microglia is the main source of microgliosis after ischaemic stroke. Brain 136(Pt 12):3578–3588. doi:10.1093/brain/awt287 ArticlePubMed Google Scholar
Ladeby R, Wirenfeldt M, Dalmau I, Gregersen R, Garcia-Ovejero D, Babcock A, Owens T, Finsen B (2005) Proliferating resident microglia express the stem cell antigen CD34 in response to acute neural injury. Glia 50(2):121–131. doi:10.1002/glia.20159 ArticlePubMed Google Scholar
Ajami B, Bennett JL, Krieger C, Tetzlaff W, Rossi FM (2007) Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nat Neurosci 10(12):1538–1543. doi:10.1038/nn2014 ArticleCASPubMed Google Scholar
Yang D, Sun YY, Bhaumik SK, Li Y, Baumann JM, Lin X, Zhang Y, Lin SH et al (2014) Blocking lymphocyte trafficking with FTY720 prevents inflammation-sensitized hypoxic-ischemic brain injury in newborns. J Neurosci 34(49):16467–16481. doi:10.1523/JNEUROSCI.2582-14.2014 ArticlePubMedPubMed Central Google Scholar
Jiao H, Wang Z, Liu Y, Wang P, Xue Y (2011) Specific role of tight junction proteins claudin-5, occludin, and ZO-1 of the blood–brain barrier in a focal cerebral ischemic insult. J Mol Neurosci 44(2):130–139. doi:10.1007/s12031-011-9496-4 ArticleCASPubMed Google Scholar
Brunkhorst R, Kanaan N, Koch A, Ferreiros N, Mirceska A, Zeiner P, Mittelbronn M, Derouiche A et al (2013) FTY720 treatment in the convalescence period improves functional recovery and reduces reactive astrogliosis in photothrombotic stroke. PLoS One 8(7):e70124. doi:10.1371/journal.pone.0070124 ArticleCASPubMedPubMed Central Google Scholar
Schuhmann MK, Krstic M, Kleinschnitz C, Fluri F (2016) Fingolimod (FTY720) reduces cortical infarction and neurological deficits during ischemic stroke through potential maintenance of microvascular patency. Curr Neurovasc Res 13(4):277–282 ArticleCASPubMed Google Scholar