A Balance of Substrate Mechanics and Matrix Chemistry Regulates Endothelial Cell Network Assembly (original) (raw)
References
Connolly J. O., N. Simpson, L. Hewlett, A. Hall 2002 Rac regulates endothelial morphogenesis and capillary assembly. Mol. Biol. Cell. 13(7): 2474–2485 Article Google Scholar
Davis G. E., D. R. Senger 2005 Endothelial extracellular matrix: biosynthesis, remodeling, and functions during vascular morphogenesis and neovessel stabilization. Circ. Res. 97(11): 1093–1107 Article Google Scholar
Deroanne C. F., C. M. Lapiere, B. V. Nusgens 2001 In vitro tubulogenesis of endothelial cells by relaxation of the coupling extracellular matrix-cytoskeleton. Cardiovasc. Res. 49(3), 647–658 Article Google Scholar
Discher D. E., P. Janmey, Y. L. Wang 2005 Tissue cells feel and respond to the stiffness of their substrate. Science 310(5751), 1139–1143 Article Google Scholar
Engler A., L. Bacakova, C. Newman, A. Hategan, M. Griffin, D. Discher 2004 Substrate compliance versus ligand density in cell on gel responses. Biophys. J. 86(1 Pt 1), 617–628 Article Google Scholar
Fam N. P., S. Verma, M. Kutryk, D. J. Stewart 2003 Clinician guide to angiogenesis. Circulation 108(21), 2613–2618 Article Google Scholar
Feder J., J. C. Marasa, J. V. Olander 1983 The formation of capillary-like tubes by calf aortic endothelial cells grown in vitro. J. Cell. Physiol. 116(1), 1–6 Article Google Scholar
Gamble J. R., L. J. Matthias, G. Meyer, P. Kaur, G. Russ, R. Faull, M. C. Berndt, M. A. Vadas 1993 Regulation of in vitro capillary tube formation by anti-integrin antibodies. J. Cell. Biol. 121(4), 931–943 Article Google Scholar
Guo W. H., M. T. Frey, N. A. Burnham, Y. L. Wang 2006 Substrate rigidity regulates the formation and maintenance of tissues. Biophys. J. 90(6), 2213–2220 Article Google Scholar
Hocking D. C., J. Sottile, K. J. Langenbach 2000 Stimulation of integrin-mediated cell contractility by fibronectin polymerization. J. Biol. Chem. 275(14), 10673–10682 Article Google Scholar
Ingber D. E. 1990 Fibronectin controls capillary endothelial cell growth by modulating cell shape. Proc. Natl. Acad. Sci. USA 87(9), 3579–3583 Article Google Scholar
Ingber D. E., J. Folkman 1989 How does extracellular matrix control capillary morphogenesis? Cell 58(5), 803–805 Article Google Scholar
Ingber D. E., J. Folkman 1989 Mechanochemical switching between growth and differentiation during fibroblast growth factor-stimulated angiogenesis in vitro: role of extracellular matrix. J. Cell. Biol. 109(1), 317–330 Article Google Scholar
Ingber D. E., D. Prusty, Z. Sun, H. Betensky, N. Wang 1995 Cell shape, cytoskeletal mechanics, and cell cycle control in angiogenesis. J. Biomech. 28(12), 1471–1484 Article Google Scholar
Intengan H. D., E. L. Schiffrin 2001 Vascular remodeling in hypertension: roles of apoptosis, inflammation, and fibrosis. Hypertension 38(3 Pt 2), 581–587 Article Google Scholar
Jiang G., A. H. Huang, Y. Cai, M. Tanase, M. P. Sheetz 2006 Rigidity sensing at the leading edge through alphavbeta3 integrins and RPTPalpha. Biophys. J. 90(5), 1804–1809 Article Google Scholar
Klein E. A., Y. Yung, P. Castagnino, D. Kothapalli, R. K. Assoian 2007 Cell adhesion, cellular tension, and cell cycle control. Methods Enzymol. 426, 155–175 Article Google Scholar
Kubota Y., H. K. Kleinman, G. R. Martin, T. J. Lawley 1988 Role of laminin and basement membrane in the morphological differentiation of human endothelial cells into capillary-like structures. J. Cell. Biol. 107(4), 1589–1598 Article Google Scholar
Liu Y., D. R. Senger 2004 Matrix-specific activation of Src and Rho initiates capillary morphogenesis of endothelial cells. Faseb. J. 18(3), 457–468 Article Google Scholar
Morla A., Z. Zhang, E. Ruoslahti 1994 Superfibronectin is a functionally distinct form of fibronectin. Nature 367(6459), 193–196 Article Google Scholar
Olander J. V., M. E. Bremer, J. C. Marasa, J. Feder 1985 Fibrin-enhanced endothelial cell organization. J. Cell. Physiol. 125(1), 1–9 Article Google Scholar
Pless D. D., Y. C. Lee, S. Roseman, R. L. Schnaar 1983 Specific cell adhesion to immobilized glycoproteins demonstrated using new reagents for protein and glycoprotein immobilization. J. Biol. Chem. 258(4), 2340–2349 Google Scholar
Reinhart-King, C. A., M. Dembo, and D. A. Hammer. Biophys. J. (in press)
Reinhart-King C. A., M. Dembo, D. A. Hammer 2005 The dynamics and mechanics of endothelial cell spreading. Biophys. J. 89(1), 676–689 Article Google Scholar
Ryan P. L., R. A. Foty, J. Kohn, M. S. Steinberg 2001 Tissue spreading on implantable substrates is a competitive outcome of cell–cell vs. cell–substratum adhesivity. Proc. Natl. Acad. Sci. USA 98(8), 4323–4327 Article Google Scholar
Schwarzbauer J. E., J. L. Sechler 1999 Fibronectin fibrillogenesis: a paradigm for extracellular matrix assembly. Curr. Opin. Cell. Biol. 11(5), 622–627 Article Google Scholar
Sieminski A. L., R. P. Hebbel, K. J. Gooch 2004 The relative magnitudes of endothelial force generation and matrix stiffness modulate capillary morphogenesis in vitro. Exp. Cell. Res. 297(2), 574–584 Article Google Scholar
Sottile J., J. Chandler 2005 Fibronectin matrix turnover occurs through a caveolin-1-dependent process. Mol. Biol. Cell. 16(2), 757–768 Article Google Scholar
Sottile J., D. C. Hocking 2002 Fibronectin polymerization regulates the composition and stability of extracellular matrix fibrils and cell–matrix adhesions. Mol. Biol. Cell. 13(10), 3546–3559 Article Google Scholar
Tomasini-Johansson B. R., N. R. Kaufman, M. G. Ensenberger, V. Ozeri, E. Hanski, D. F. Mosher 2001 A 49-residue peptide from adhesin F1 of Streptococcus pyogenes inhibits fibronectin matrix assembly. J. Biol. Chem. 276(26), 23430–23439 Article Google Scholar
Vailhe B., X. Ronot, P. Tracqui, Y. Usson, L. Tranqui 1997 In vitro angiogenesis is modulated by the mechanical properties of fibrin gels and is related to alpha(v)beta3 integrin localization. In vitro Cell. Dev. Biol. Anim. 33(10), 763–773 Article Google Scholar
Vernon R. B., J. C. Angello, M. L. Iruela-Arispe, T. F. Lane, E. H. Sage 1992 Reorganization of basement membrane matrices by cellular traction promotes the formation of cellular networks in vitro. Lab. Invest. 66(5), 536–547 Google Scholar
Vernon R. B., S. L. Lara, C. J. Drake, M. L. Iruela-Arispe, J. C. Angello, C. D. Little, T. N. Wight, E. H. Sage 1995 Organized type I collagen influences endothelial patterns during “spontaneous angiogenesis in vitro”: planar cultures as models of vascular development. In vitro Cell. Dev. Biol. Anim. 31(2), 120–131 Article Google Scholar
Wang Y. L., R. J. Pelham Jr. 1998 Preparation of a flexible, porous polyacrylamide substrate for mechanical studies of cultured cells. Methods Enzymol. 298, 489–496 Article Google Scholar
Yeung T., P. C. Georges, L. A. Flanagan, B. Marg, M. Ortiz, M. Funaki, N. Zahir, W. Ming, V. Weaver, P. A. Janmey 2005 Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell. Motil. Cytoskeleton 60(1), 24–34 Article Google Scholar
Zhou X., R. G. Rowe, N. Hiraoka, J. P. George, D. Wirtz, D. F. Mosher, I. Virtanen, M. A. Chernousov, S. J. Weiss 2008 Fibronectin fibrillogenesis regulates three-dimensional neovessel formation. Genes Dev. 22(9), 1231–1243 Article Google Scholar