A Balance of Substrate Mechanics and Matrix Chemistry Regulates Endothelial Cell Network Assembly (original) (raw)

References

  1. Connolly J. O., N. Simpson, L. Hewlett, A. Hall 2002 Rac regulates endothelial morphogenesis and capillary assembly. Mol. Biol. Cell. 13(7): 2474–2485
    Article Google Scholar
  2. Davis G. E., D. R. Senger 2005 Endothelial extracellular matrix: biosynthesis, remodeling, and functions during vascular morphogenesis and neovessel stabilization. Circ. Res. 97(11): 1093–1107
    Article Google Scholar
  3. Deroanne C. F., C. M. Lapiere, B. V. Nusgens 2001 In vitro tubulogenesis of endothelial cells by relaxation of the coupling extracellular matrix-cytoskeleton. Cardiovasc. Res. 49(3), 647–658
    Article Google Scholar
  4. Discher D. E., P. Janmey, Y. L. Wang 2005 Tissue cells feel and respond to the stiffness of their substrate. Science 310(5751), 1139–1143
    Article Google Scholar
  5. Engler A., L. Bacakova, C. Newman, A. Hategan, M. Griffin, D. Discher 2004 Substrate compliance versus ligand density in cell on gel responses. Biophys. J. 86(1 Pt 1), 617–628
    Article Google Scholar
  6. Fam N. P., S. Verma, M. Kutryk, D. J. Stewart 2003 Clinician guide to angiogenesis. Circulation 108(21), 2613–2618
    Article Google Scholar
  7. Feder J., J. C. Marasa, J. V. Olander 1983 The formation of capillary-like tubes by calf aortic endothelial cells grown in vitro. J. Cell. Physiol. 116(1), 1–6
    Article Google Scholar
  8. Gamble J. R., L. J. Matthias, G. Meyer, P. Kaur, G. Russ, R. Faull, M. C. Berndt, M. A. Vadas 1993 Regulation of in vitro capillary tube formation by anti-integrin antibodies. J. Cell. Biol. 121(4), 931–943
    Article Google Scholar
  9. Guo W. H., M. T. Frey, N. A. Burnham, Y. L. Wang 2006 Substrate rigidity regulates the formation and maintenance of tissues. Biophys. J. 90(6), 2213–2220
    Article Google Scholar
  10. Hocking D. C., J. Sottile, K. J. Langenbach 2000 Stimulation of integrin-mediated cell contractility by fibronectin polymerization. J. Biol. Chem. 275(14), 10673–10682
    Article Google Scholar
  11. Ingber D. E. 1990 Fibronectin controls capillary endothelial cell growth by modulating cell shape. Proc. Natl. Acad. Sci. USA 87(9), 3579–3583
    Article Google Scholar
  12. Ingber D. E., J. Folkman 1989 How does extracellular matrix control capillary morphogenesis? Cell 58(5), 803–805
    Article Google Scholar
  13. Ingber D. E., J. Folkman 1989 Mechanochemical switching between growth and differentiation during fibroblast growth factor-stimulated angiogenesis in vitro: role of extracellular matrix. J. Cell. Biol. 109(1), 317–330
    Article Google Scholar
  14. Ingber D. E., D. Prusty, Z. Sun, H. Betensky, N. Wang 1995 Cell shape, cytoskeletal mechanics, and cell cycle control in angiogenesis. J. Biomech. 28(12), 1471–1484
    Article Google Scholar
  15. Intengan H. D., E. L. Schiffrin 2001 Vascular remodeling in hypertension: roles of apoptosis, inflammation, and fibrosis. Hypertension 38(3 Pt 2), 581–587
    Article Google Scholar
  16. Jiang G., A. H. Huang, Y. Cai, M. Tanase, M. P. Sheetz 2006 Rigidity sensing at the leading edge through alphavbeta3 integrins and RPTPalpha. Biophys. J. 90(5), 1804–1809
    Article Google Scholar
  17. Klein E. A., Y. Yung, P. Castagnino, D. Kothapalli, R. K. Assoian 2007 Cell adhesion, cellular tension, and cell cycle control. Methods Enzymol. 426, 155–175
    Article Google Scholar
  18. Kubota Y., H. K. Kleinman, G. R. Martin, T. J. Lawley 1988 Role of laminin and basement membrane in the morphological differentiation of human endothelial cells into capillary-like structures. J. Cell. Biol. 107(4), 1589–1598
    Article Google Scholar
  19. Liu Y., D. R. Senger 2004 Matrix-specific activation of Src and Rho initiates capillary morphogenesis of endothelial cells. Faseb. J. 18(3), 457–468
    Article Google Scholar
  20. Morla A., Z. Zhang, E. Ruoslahti 1994 Superfibronectin is a functionally distinct form of fibronectin. Nature 367(6459), 193–196
    Article Google Scholar
  21. Olander J. V., M. E. Bremer, J. C. Marasa, J. Feder 1985 Fibrin-enhanced endothelial cell organization. J. Cell. Physiol. 125(1), 1–9
    Article Google Scholar
  22. Pless D. D., Y. C. Lee, S. Roseman, R. L. Schnaar 1983 Specific cell adhesion to immobilized glycoproteins demonstrated using new reagents for protein and glycoprotein immobilization. J. Biol. Chem. 258(4), 2340–2349
    Google Scholar
  23. Reinhart-King, C. A., M. Dembo, and D. A. Hammer. Biophys. J. (in press)
  24. Reinhart-King C. A., M. Dembo, D. A. Hammer 2005 The dynamics and mechanics of endothelial cell spreading. Biophys. J. 89(1), 676–689
    Article Google Scholar
  25. Ryan P. L., R. A. Foty, J. Kohn, M. S. Steinberg 2001 Tissue spreading on implantable substrates is a competitive outcome of cell–cell vs. cell–substratum adhesivity. Proc. Natl. Acad. Sci. USA 98(8), 4323–4327
    Article Google Scholar
  26. Schwarzbauer J. E., J. L. Sechler 1999 Fibronectin fibrillogenesis: a paradigm for extracellular matrix assembly. Curr. Opin. Cell. Biol. 11(5), 622–627
    Article Google Scholar
  27. Sieminski A. L., R. P. Hebbel, K. J. Gooch 2004 The relative magnitudes of endothelial force generation and matrix stiffness modulate capillary morphogenesis in vitro. Exp. Cell. Res. 297(2), 574–584
    Article Google Scholar
  28. Sottile J., J. Chandler 2005 Fibronectin matrix turnover occurs through a caveolin-1-dependent process. Mol. Biol. Cell. 16(2), 757–768
    Article Google Scholar
  29. Sottile J., D. C. Hocking 2002 Fibronectin polymerization regulates the composition and stability of extracellular matrix fibrils and cell–matrix adhesions. Mol. Biol. Cell. 13(10), 3546–3559
    Article Google Scholar
  30. Tomasini-Johansson B. R., N. R. Kaufman, M. G. Ensenberger, V. Ozeri, E. Hanski, D. F. Mosher 2001 A 49-residue peptide from adhesin F1 of Streptococcus pyogenes inhibits fibronectin matrix assembly. J. Biol. Chem. 276(26), 23430–23439
    Article Google Scholar
  31. Vailhe B., X. Ronot, P. Tracqui, Y. Usson, L. Tranqui 1997 In vitro angiogenesis is modulated by the mechanical properties of fibrin gels and is related to alpha(v)beta3 integrin localization. In vitro Cell. Dev. Biol. Anim. 33(10), 763–773
    Article Google Scholar
  32. Vernon R. B., J. C. Angello, M. L. Iruela-Arispe, T. F. Lane, E. H. Sage 1992 Reorganization of basement membrane matrices by cellular traction promotes the formation of cellular networks in vitro. Lab. Invest. 66(5), 536–547
    Google Scholar
  33. Vernon R. B., S. L. Lara, C. J. Drake, M. L. Iruela-Arispe, J. C. Angello, C. D. Little, T. N. Wight, E. H. Sage 1995 Organized type I collagen influences endothelial patterns during “spontaneous angiogenesis in vitro”: planar cultures as models of vascular development. In vitro Cell. Dev. Biol. Anim. 31(2), 120–131
    Article Google Scholar
  34. Wang Y. L., R. J. Pelham Jr. 1998 Preparation of a flexible, porous polyacrylamide substrate for mechanical studies of cultured cells. Methods Enzymol. 298, 489–496
    Article Google Scholar
  35. Yeung T., P. C. Georges, L. A. Flanagan, B. Marg, M. Ortiz, M. Funaki, N. Zahir, W. Ming, V. Weaver, P. A. Janmey 2005 Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell. Motil. Cytoskeleton 60(1), 24–34
    Article Google Scholar
  36. Zhou X., R. G. Rowe, N. Hiraoka, J. P. George, D. Wirtz, D. F. Mosher, I. Virtanen, M. A. Chernousov, S. J. Weiss 2008 Fibronectin fibrillogenesis regulates three-dimensional neovessel formation. Genes Dev. 22(9), 1231–1243
    Article Google Scholar

Download references