Dose- and time-dependent α-synuclein aggregation induced by ferric iron in SK-N-SH cells (original) (raw)

References

  1. Halliday GM, Del Tredici K, Braak H. Critical appraisal of brain pathology staging related to presymptomatic and symptomatic cases of sporadic Parkinson’s disease. J Neural Transm Suppl 2006, 70: 99–103.
    Article PubMed Google Scholar
  2. Shults CW. Lewy bodies. Proc Natl Acad Sci U S A 2006, 103: 1661–1668.
    Article CAS PubMed Google Scholar
  3. Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M. α-Synuclein in Lewy bodies. Nature 1997, 388: 839–840.
    Article CAS PubMed Google Scholar
  4. Iwai A, Masliah E, Yoshimoto M, Ge N, Flanagan L, de Silva HA, et al. The precursor protein of non-Aβ component of Alzheimer’s disease amyloid is a presynaptic protein of the central nervous system. Neuron 1995, 14: 467–475.
    Article CAS PubMed Google Scholar
  5. Wislet-Gendebien S, D’souza C, Kawarai T, St George-Hyslop P, Westaway D, Fraser P, et al. Cytosolic proteins regulate α-synuclein dissociation from presynaptic membranes. J Biol Chem 2006, 281: 32148–32155.
    Article CAS PubMed Google Scholar
  6. Friedlich AL, Tanzi RE, Rogers JT. The 5′-untranslated region of Parkinson’s disease α-synuclein messengerRNA contains a predicted iron responsive element. Mol Psychiatry 2007, 12: 222–223.
    Article CAS PubMed Google Scholar
  7. Kruger R, Kuhn W, Muller T, Woitalla D, Graeber M, Kosel S, et al. Ala30Pro mutation in the gene encoding α-synuclein in Parkinson’s disease. Nat Genet 1998, 18: 106–108.
    Article CAS PubMed Google Scholar
  8. Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, et al. Mutation in the α-synuclein gene identified in families with Parkinson’s disease. Science 1997, 276: 2045–2047.
    Article CAS PubMed Google Scholar
  9. Zarranz JJ, Alegre J, Gomez-Esteban JC, Lezcano E, Ros R, Ampuero I, et al. The new mutation, E46K, of α-synuclein causes Parkinson and Lewy body dementia. Ann Neurol 2004, 55: 164–173.
    Article CAS PubMed Google Scholar
  10. Singleton AB, Farrer M, Johnson J, Singleton A, Hague S, Kachergus J, et al. α-Synuclein locus triplication causes Parkinson’s disease. Science 2003, 302: 841.
    Article CAS PubMed Google Scholar
  11. Dexter DT, Wells FR, Lees AJ, Agid F, Agid Y, Jenner P, et al. Increased nigral iron content and alterations in other metal ions occurring in brain in Parkinson’s disease. J Neurochem 1989, 52: 1830–1836.
    Article CAS PubMed Google Scholar
  12. Good PF, Olanow CW, Perl DP. Neuromelanin-containing neurons of the substantia nigra accumulate iron and aluminum in Parkinson’s disease: a LAMMA study. Brain Res 1992, 593: 343–346.
    Article CAS PubMed Google Scholar
  13. Martin WR, Wieler M, Gee M. Midbrain iron content in early Parkinson disease: a potential biomarker of disease status. Neurology 2008, 70: 1411–1417.
    Article CAS PubMed Google Scholar
  14. Oakley AE, Collingwood JF, Dobson J, Love G, Perrott HR, Edwardson JA, et al. Individual dopaminergic neurons show raised iron levels in Parkinson disease. Neurology 2007, 68: 1820–1825.
    Article CAS PubMed Google Scholar
  15. Riederer P, Sofic E, Rausch WD, Schmidt B, Reynolds GP, Jellinger K, et al. Transition metals, ferritin, glutathione, and ascorbic acid in parkinsonian brains. J Neurochem 1989, 52: 515–520.
    Article CAS PubMed Google Scholar
  16. Zecca L, Berg D, Arzberger T, Ruprecht P, Rausch WD, Musicco M, et al. In vivo detection of iron and neuromelanin by transcranial sonography: a new approach for early detection of substantia nigra damage. Mov Disord 2005, 20: 1278–1285.
    Article PubMed Google Scholar
  17. Wang J, Jiang H, Xie JX. Time dependent effects of 6-OHDA lesions on iron level and neuronal loss in rat nigrostriatal system. Neurochem Res 2004, 29: 2239–2243.
    Article CAS PubMed Google Scholar
  18. Jiang H, Luan Z, Wang J, Xie J. Neuroprotective effects of iron chelator Desferal on dopaminergic neurons in the substantia nigra of rats with iron-overload. Neurochem Int 2006, 49: 605–609.
    Article CAS PubMed Google Scholar
  19. Wang J, Jiang H, Xie JX. Ferroportin1 and hephaestin are involved in the nigral iron accumulation of 6-OHDA-lesioned rats. Eur J Neurosci 2007, 25: 2766–2772.
    Article PubMed Google Scholar
  20. Ostrerova-Golts N, Petrucelli L, Hardy J, Lee JM, Farer M, Wolozin B. The A53T α-synuclein mutation increases irondependent aggregation and toxicity. J Neurosci 2000, 20: 6048–6054.
    CAS PubMed Google Scholar
  21. Golts N, Snyder H, Frasier M, Theisler C, Choi P, Wolozin B. Magnesium inhibits spontaneous and iron-induced aggregation of α-synuclein. J Biol Chem 2002, 277: 16116–16123.
    Article CAS PubMed Google Scholar
  22. Bharathi, Indi SS, Rao KS. Copper- and iron-induced differential fibril formation in α-synuclein: TEM study. Neurosci Lett 2007, 424: 78–82.
    Article CAS PubMed Google Scholar
  23. Lee HJ, Shin SY, Choi C, Lee YH, Lee SJ. Formation and removal of α-synuclein aggregates in cells exposed to mitochondrial inhibitors. J Biol Chem 2002, 277: 5411–5417.
    Article CAS PubMed Google Scholar
  24. Junxia X, Hong J, Wenfang C, Ming Q. Dopamine release rather than content in the caudate putamen is associated with behavioral changes in the iron rat model of Parkinson’s disease. Exp Neurol 2003, 182: 483–489.
    Article CAS PubMed Google Scholar
  25. Jenner P, Olanow CW. The pathogenesis of cell death in Parkinson’s disease. Neurology 2006, 66: S24–36.
    PubMed Google Scholar
  26. Zhang S, Wang J, Song N, Xie J, Jiang H. Up-regulation of divalent metal transporter 1 is involved in 1-methyl-4-phenylpyridinium MPP+-induced apoptosis in MES23.5 cells. Neurobiol Aging 2009, 30: 1466–1476.
    Article CAS PubMed Google Scholar
  27. Yuan H, Zheng JC, Liu P, Zhang SF, Xu JY, Bai LM. Pathogenesis of Parkinson’s disease: oxidative stress, environmental impact factors and inflammatory processes. Neurosci Bull 2007, 2: 125–130.
    Article Google Scholar
  28. Hirsch EC, Brandel JP, Galle P, Javoy-Agid F, Agid Y. Iron and aluminum increase in the substantia nigra of patients with Parkinson’s disease: an X-ray microanalysis. J Neurochem 1991, 56: 446–451.
    Article CAS PubMed Google Scholar
  29. He Y, Lee T, Leong SK. Time course of dopaminergic cell death and changes in iron, ferritin and transferrin levels in the rat substantia nigra after 6-hydroxydopamine (6-OHDA) lesioning. Free Radic Res 1999, 31: 103–112.
    Article CAS PubMed Google Scholar
  30. He Y, Thong PS, Lee T, Leong SK, Shi CY, Wong PT, et al. Increased iron in the substantia nigra of 6-OHDA induced parkinsonian rats: a nuclear microscopy study. Brain Res 1996, 735: 149–153.
    Article CAS PubMed Google Scholar
  31. Ma ZG, Wang J, Jiang H, Liu TW, Xie JX. Myricetin reduces 6-hydroxydopamine-induced dopamine neuron degeneration in rats. Neuroreport 2007, 18: 1181–1185.
    Article CAS PubMed Google Scholar
  32. Mochizuki H, Imai H, Endo K, Yokomizo K, Murata Y, Hattori N, et al. Iron accumulation in the substantia nigra of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced hemiparkinsonian monkeys. Neurosci Lett 1994, 168: 251–253.
    Article CAS PubMed Google Scholar
  33. Temlett JA, Landsberg JP, Watt F, Grime GW. Increased iron in the substantia nigra compacta of the MPTP-lesioned hemiparkinsonian African green monkey: evidence from proton microprobe elemental microanalysis. J Neurochem 1994, 62: 134–146.
    CAS PubMed Google Scholar
  34. Wang J, Xu HM, Yang HD, Du XX, Jiang H, Xie JX. Rg1 reduces nigral iron levels of MPTP-treated C57BL6 mice by regulating certain iron transport proteins. Neurochem Int 2009, 54: 43–48.
    Article CAS PubMed Google Scholar
  35. Jiang H, Qian ZM, Xie JX. Increased DMT1 expression and iron content in MPTP-treated C57BL/6 mice. Acta Physiol Sin 2003, 55: 571–576.
    CAS Google Scholar
  36. Duda JE, Lee VM, Trojanowski JQ. Neuropathology of synuclein aggregates. J Neurosci Res 2000, 61: 121–127.
    Article CAS PubMed Google Scholar
  37. Kostka M, Hogen T, Danzer KM, Levin J, Habeck M, Wirth A, et al. Single particle characterization of iron-induced pore-forming α-synuclein oligomers. J Biol Chem 2008, 283: 10992–11003.
    Article CAS PubMed Google Scholar
  38. Kehrer JP. The Haber-Weiss reaction and mechanisms of toxicity. Toxicology 2000, 149: 43–50.
    Article CAS PubMed Google Scholar
  39. Souza JM, Giasson BI, Chen Q, Lee VM, Ischiropoulos H. Dityrosine cross-linking promotes formation of stable α-synuclein polymers. Implication of nitrative and oxidative stress in the pathogenesis of neurodegenerative synucleinopathies. J Biol Chem 2000, 275: 18344–18349.
    Article CAS PubMed Google Scholar

Download references