Neuroprotective effects of chronic hesperetin administration in mice (original) (raw)
References
Adams, J. D. Jr., Klaidman, L. K., Odunze, I. N., Shen, H. C., and Miller, C. A., Alzheimer’s and Parkinson’s disease. Brain levels of glutathione, glutathione disulfide, and vitamin E. Mol. Chem. Neuropathol., 14, 213–226 (1991). ArticlePubMedCAS Google Scholar
Aldini, G., Dalle-Donne, I., Facino, R. M., Milzani, A., and Carini, M., Intervention strategies to inhibit protein carbonylation by lipoxidation-derived reactive carbonyls. Med. Res. Rev., 27, 817–868 (2007). ArticlePubMedCAS Google Scholar
Ansari, M. A., Joshi, G., Huang, Q., Opii, W. O., Abdul, H. M., Sultana, R., and Butterfield, D. A., In vivo administration of D609 leads to protection of subsequently isolated gerbil brain mitochondria subjected to in vitro oxidative stress induced by amyloid beta-peptide and other oxidative stressors: relevance to Alzheimer’s disease and other oxidative stress-related neurodegenerative disorders. Free Radic. Biol. Med., 41, 1694–1703 (2006). ArticlePubMedCAS Google Scholar
Bharath, S., Hsu, M., Kaur, D., Rajagopalan, S., and Andersen, J. K., Glutathione, iron and Parkinson’s disease. Biochem. Pharmacol., 64, 1037–1048 (2002). ArticlePubMedCAS Google Scholar
Carlberg, I. and Mannervik, B., Glutathione reductase. Methods Enzymol., 113, 484–490 (1985). ArticlePubMedCAS Google Scholar
Cho, J., Antioxidant and neuroprotective effects of hesperidin and its aglycone hesperetin. Arch. Pharm. Res., 29, 699–706 (2006). ArticlePubMedCAS Google Scholar
Choi, E. J., Kim, G. D., Chee, K. M., and Kim, G. H., Effects of hesperetin on vessel structure formation in mouse embryonic stem (mES) cells. Nutrition, 22, 947–951 (2006). ArticlePubMedCAS Google Scholar
Choi, E. J., Antioxidative effects of hesperetin against 7,12-dimethylbenz(a)anthracene-induced oxidative stress in mice. Life Sci., 82, 1059–1064 (2008). ArticlePubMedCAS Google Scholar
Cooper, A. J. L., Glutathione in the brain: disorders of glutathione metabolism: The Molecular and Genetic Basis of Neurological Disease. Butterworth-Heinemann, Boston, 1997, pp. 1195–1230, (1997). Google Scholar
Cruz-Aguado, R., Turner, L. F., Diaz, C. M., and Pinero, J., Nerve growth factor and striatal glutathione metabolism in a rat model of Huntington’s disease. Restor. Neurol. Neurosci., 17, 217–221 (2000). PubMedCAS Google Scholar
Erdem, E., Carlier, R., Idir, A. B., Masnou, P. O., Moulonguet, A., Adams, D., and Doyon, D., Gadolinium-enhanced MRI in central nervous system Behçet’s disease. Neuroradiology, 35, 142–144 (1993). ArticlePubMedCAS Google Scholar
Flohé, L. and Günzler, W. A., Assays of glutathione peroxidase. Methods Enzymol., 105, 114–121 (1984). ArticlePubMed Google Scholar
Fridovich, I., Superoxide anion radical (O2−.), superoxide dismutases, and related matters. J. Biol. Chem., 272, 18515–18517 (1997). ArticlePubMedCAS Google Scholar
Fridovich, I., Superoxide radical and superoxide dismutases. Annu. Rev. Biochem., 64, 97–112 (1995). ArticlePubMedCAS Google Scholar
Garg, A., Garg, S., Zaneveld, L. J., and Singla, A. K., Chemistry and pharmacology of the Citrus bioflavonoid hesperidin. Phytother. Res., 15, 655–669 (2001). ArticlePubMedCAS Google Scholar
Hirrlinger, J., Schulz, J. B., and Dringen, R., Effects of dopamine on the glutathione metabolism of cultured astroglial cells: implications for Parkinson’s disease. J. Neurochem., 82, 458–467 (2002). ArticlePubMedCAS Google Scholar
Hissin, P. J. and Hilf, R., A fluorometric method for determination of oxidized and reduced glutathione in tissues. Anal. Biochem., 74, 214–226 (1976). ArticlePubMedCAS Google Scholar
Ho, Y. S., Magnenat, J. L., Bronson, R. T., Cao, J., Gargano, M., Sugawara, M., and Funk, C. D., Mice deficient in cellular glutathione peroxidase develop normally and show no increased sensitivity to hyperoxia. J. Biol. Chem., 272, 16644–16651 (1997a). ArticlePubMedCAS Google Scholar
Ho, Y. S., Swenson, L., Derewenda, U., Serre, L., Wei, Y., Dauter, Z., Hattori, M., Adachi, T., Aoki, J., Arai, H., Inoue, K., and Derewenda, Z. S., Brain acetylhydrolase that inactivates platelet-activating factor is a G-protein-like trimer. Nature, 385, 89–93 (1997b). ArticlePubMedCAS Google Scholar
Hwang, S. L. and Yen, G. C., Neuroprotective effects of the citrus flavanones against H2O2-induced cytotoxicity in PC12 cells. J. Agric. Food Chem., 859–864 (2008).
Jaeger, A., Wälti, M., and Neftel, K., Side effects of flavonoids in medical practice. Prog. Clin. Biol. Res., 280, 379–394 (1988). PubMedCAS Google Scholar
Kim, J. Y., Jung, K. J., Choi, J. S., and Chung, H. Y., Hesperetin: a potent antioxidant against peroxynitrite. Free Radic. Res., 38, 761–769 (2004). ArticlePubMedCAS Google Scholar
Marklund, S. and Marklund, G., Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem., 47, 469–474 (1974). ArticlePubMedCAS Google Scholar
Moreira, P. I., Siedlak, S. L., Aliev, G., Zhu, X., Cash, A. D., Smith, M. A., and Perry, G., Oxidative stress mechanisms and potential therapeutics in Alzheimer disease. J. Neural Transm., 112, 921–932 (2005). ArticlePubMedCAS Google Scholar
Nunomura, A., Moreira, P. I., Lee, H. G., Zhu, X., Castellani, R. J., Smith, M. A., and Perry, G., Neuronal death and survival under oxidative stress in Alzheimer and Parkinson diseases. CNS Neurol. Disord. Drug Targets, 6, 411–423 (2007). ArticlePubMedCAS Google Scholar
Ohkawa, H., Ohishi, N., and Yagi, K., Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem., 95, 351–358 (1979). ArticlePubMedCAS Google Scholar
Pollard, S. E., Whiteman, M., and Spencer, J. P., Modulation of peroxynitrite-induced fibroblast injury by hesperetin: a role for intracellular scavenging and modulation of ERK signaling. Biochem. Biophys. Res. Commun., 347, 916–923 (2006). ArticlePubMedCAS Google Scholar
Rao, A. V. and Balachandran, B., Role of oxidative stress and antioxidants in neurodegenerative diseases. Nutr. Neurosci., 5, 291–309 (2002). ArticlePubMedCAS Google Scholar
Reznick, A. Z. and Packer, L., Oxidative damage to proteins: spectrophotometric method for carbonyl assay. Methods Enzymol., 233, 357–363 (1994). ArticlePubMedCAS Google Scholar
Ross, J. A. and Kasum, C. M., Dietary flavonoids: bioavailability, metabolic effects, and safety. Annu. Rev. Nutr., 22, 19–34 (2002). ArticlePubMedCAS Google Scholar
Sian, J., Dexter, D. T., Lees, A. J., Daniel, S., Agid, Y., Javoy-Agid, F., Jenner, P., and Marsden, C. D., Alterations in glutathione levels in Parkinson’s disease and other neurodegenerative disorders affecting basal ganglia. Ann. Neurol., 36, 348–355 (1994). ArticlePubMedCAS Google Scholar
Suk, K., Regulation of neuroinflammation by herbal medicine and its implications for neurodegenerative diseases. A focus on traditional medicines and flavonoids. Neurosignals., 14, 23–33 (2005). ArticlePubMedCAS Google Scholar
Zhu, Y., Carvey, P. M., and Ling, Z., Age-related changes in glutathione and glutathione-related enzymes in rat brain. Brain Res., 1090, 35–44 (2006). ArticlePubMedCAS Google Scholar