Consensus Paper: Radiological Biomarkers of Cerebellar Diseases (original) (raw)

References

  1. Mascalchi M, Vella A. Magnetic resonance and nuclear medicine imaging in ataxias. Handb Clin Neurol [Rev]. 2012;103:85–110.
    Google Scholar
  2. Currie S, Hadjivassiliou M, Craven IJ, Wilkinson ID, Griffiths PD, Hoggard N. Magnetic resonance imaging biomarkers in patients with progressive ataxia: current status and future direction. Cerebellum. 2013;12(2):245–66.
    PubMed Google Scholar
  3. Jung BC, Choi SI, Du AX, Cuzzocreo JL, Geng ZZ, Ying HS, et al. Principal component analysis of cerebellar shape on MRI separates SCA type 2 and 6 into two archetypal modes of degeneration. Cerebellum. 2012;11:887–95.
    PubMed Central PubMed Google Scholar
  4. Dohlinger S, Hauser TK, Borkert J, Luft AR, Schulz JB. Magnetic resonance imaging in spinocerebellar ataxias. Cerebellum [Res Support Non-US Gov’t]. 2008;7(2):204–14.
    Google Scholar
  5. Luft AR, Skalej M, Welte D, Kolb R, Burk K, Schulz JB, et al. A new semiautomated, three-dimensional technique allowing precise quantification of total and regional cerebellar volume using MRI. Magn Reson Med [Clin Trial]. 1998;40(1):143–51.
    CAS Google Scholar
  6. Good C, Johnsrude I, Ashburner J, Henson R, Friston K, Frackowiak R. A voxel-based morphometric study of aging in 465 normal adult human brains. Neuroimage. 2001;14:21–36.
    CAS PubMed Google Scholar
  7. Hadjivassiliou M, Currie S, Hoggard N. MR spectroscopy in paraneoplastic cerebellar degeneration. J Neuroradiol J Neuroradiol [Lett]. 2013;40(4):310–2.
    Google Scholar
  8. Currie S, Hadjivassiliou M, Craven IJ, Wilkinson ID, Griffiths PD, Hoggard N. Magnetic resonance spectroscopy of the brain. Postgrad Med J. 2013;89(1048):94–106.
    CAS PubMed Google Scholar
  9. Braga-Neto P, Dutra LA, Pedroso JL, Felício AC, Alessi H, Santos-Galduroz RF, et al. Cognitive deficits in Machado-Joseph disease correlate with hypoperfusion of visual system areas. Cerebellum. 2012;11:1037–44.
    PubMed Google Scholar
  10. Nanri K, Okita M, Takeguchi M, Taguchi T, Ishiko T, Saito H, et al. Intravenous immunoglobulin therapy for autoantibody-positive cerebellar ataxia. Intern Med. 2009;48:783–90.
    PubMed Google Scholar
  11. Kimura N, Kumamoto T, Masuda T, Nomura Y, Hanaoka T, Hazama Y, et al. Evaluation of the effect of thyrotropin releasing hormone (TRH) on regional cerebral blood flow in spinocerebellar degeneration using 3DSRT. J Neurol Sci. 2009;281:93–8.
    CAS PubMed Google Scholar
  12. Kimura N, Kumamoto T, Masuda T, Nomura Y, Hanaoka T, Hazama Y, et al. Evaluation of the effects of thyrotropin releasing hormone (TRH) therapy on regional cerebral blood flow in the cerebellar variant of multiple system atrophy using 3DSRT. J Neuroimaging. 2011;21:132–7.
    PubMed Google Scholar
  13. Lyoo CH, Jeong Y, Ryu YH, Lee SY, Song TJ, Lee JH, et al. Effects of disease duration on the clinical features and brain glucose metabolism in patients with mixed type multiple system atrophy. Brain. 2008;131:438–46.
    CAS PubMed Google Scholar
  14. Basu S, Alavi A. Role of FDG-PET in the clinical management of paraneoplastic neurological syndrome: detection of the underlying malignancy and the brain PET-MRI correlates. Mol Imaging Biol. 2008;10:131–7.
    PubMed Google Scholar
  15. Wang PS, Liu RS, Yang BH, Soong BW. Topographic brain mapping of the international cooperative ataxia rating scale. A positron emission tomography study. J Neurol. 2007;254:722–8.
    PubMed Google Scholar
  16. Inagaki A, Iida A, Matsubara M, Inagaki H. Positron emission tomography and magnetic resonance imaging in spinocerebellar ataxia type 2: a study of symptomatic and asymptomatic individuals. Eur J Neurol. 2005;12:725–8.
    CAS PubMed Google Scholar
  17. Soong B, Liu R. Positron emission tomography in asymptomatic gene carriers of Machado Joseph disease. J Neurol Neurosurg Psychiatry. 1998;64:499–504.
    PubMed Central CAS PubMed Google Scholar
  18. Brockmann K, Reimold M, Globas C, Hauser TK, Walter U, Machulla HJ, et al. PET and MRI reveal early evidence of neurodegeneration in Spinocerebellar Ataxia Type 17. J Nucl Med. 2012;53:1074–80.
    PubMed Google Scholar
  19. Hosoi Y, Suzuki-Sakao M, Terada T, Konishi T, Ouchi Y, Miyajima H, et al. GABA-A receptor impairment in cerebellar ataxia with anti-glutamic acid decarboxylase antibodies. J Neurol. 2013. doi:10.1007/s00415-013-7092-y.
    Google Scholar
  20. Varrone A, Salvatore E, De Michele G, Barone P, Sansone V, Pellecchia MT, et al. Reduced striatal [123I]FP-CIT binding in SCA2 patients without parkinsonism. Ann Neurol. 2004;55:426–30.
    PubMed Google Scholar
  21. Kim JM, Lee JY, Kim HJ, Kim JS, Kim YK, Park SS, et al. The wide clinical spectrum and nigrostriatal dopaminergic damage in spinocerebellar ataxia type 6. J Neurol Neurosurg Psychiatry. 2010;81:529–32.
    PubMed Google Scholar
  22. Kelp A, Koeppen AH, Petrasch-Parwez E, Calaminus C, Bauer C, Portal E, et al. A novel transgenic rat model for spinocerebellar ataxia type 17 recapitulates neuropathological changes and supplies in vivo imaging biomarkers. J Neurosci. 2013;33:9068–81.
    CAS PubMed Google Scholar
  23. Malinger G, Lev D, Lerman-Sagie T. The fetal cerebellum. Pitfalls in diagnosis and management. Prenat Diagn. 2009;29:372–80.
    PubMed Google Scholar
  24. Limperopoulos C, Robertson Jr RL, Khwaja OS, et al. How accurately does current fetal imaging identify posterior fossa anomalies? Am J Roentgenol. 2008;190:1637–43.
    Google Scholar
  25. Garel C. Posterior fossa malformations: main features and limits in prenatal diagnosis. Pediatr Radiol. 2010;40:1038–45.
    PubMed Google Scholar
  26. Parazzini C, Righini A, Rustico M, Consonni D, Triulzi F. Prenatal magnetic resonance imaging: brain normal linear biometric values below 24 gestational weeks. Neuroradiology. 2008;50:877–83.
    CAS PubMed Google Scholar
  27. Hatab MR, Kamourieh SW, Twickler DM. MR volume of the fetal cerebellum in relation to growth. J Magn Reson Imaging. 2008;27:840–5.
    PubMed Google Scholar
  28. Poretti A, Limperopoulos C, Roulet-Perez E, et al. Outcome of severe unilateral cerebellar hypoplasia. Dev Med Child Neurol. 2010;52:718–24.
    PubMed Google Scholar
  29. Wong AM, Bilaniuk LT, Zimmerman RA, Liu PL. Prenatal MR imaging of Dandy-Walker complex: midline sagittal area analysis. Eur J Radiol. 2012;81:26–30.
    Google Scholar
  30. Tarui T, Limperopoulos C, Sullivan NR, Robertson Richard L, du Plessis AJ. Long-term developmental outcome of children with a fetal diagnosis of isolated inferior vermian hypoplasia. Arch Dis Child Fetal Neonatal. 2014;99:54–8.
    Google Scholar
  31. Klockgether T, Skalej M, Wedekind D, Luft AR, Welte D, Schulz JB, et al. Autosomal dominant cerebellar ataxia type I. MRI-based volumetry of posterior fossa structures and basal ganglia in spinocerebellar ataxia types 1, 2 and 3. Brain. 1998;121(Pt 9):1687–93.
    PubMed Google Scholar
  32. Schulz JB, Borkert J, Wolf S, Schmitz-Hubsch T, Rakowicz M, Mariotti C, et al. Visualization, quantification and correlation of brain atrophy with clinical symptoms in spinocerebellar ataxia types 1, 3 and 6. Neuroimage. 2010;49:158–68.
    PubMed Google Scholar
  33. Jacobi H, Reetz K, du Montcel ST, Bauer P, Mariotti C, Nanetti L, et al. Biological and clinical characteristics of individuals at risk for spinocerebellar ataxia types 1, 2, 3, and 6 in the longitudinal RISCA study: analysis of baseline data. Lancet Neurol. 2013;12:650–8.
    PubMed Google Scholar
  34. Burk K, Abele M, Fetter M, Dichgans J, Skalej M, Laccone F, et al. Autosomal dominant cerebellar ataxia type I clinical features and MRI in families with SCA1, SCA2 and SCA3. Brain. 1996;119(Pt 5):1497–505.
    PubMed Google Scholar
  35. Reetz K, Costa AS, Mirzazade S, Lehmann A, Juzek A, Rakowicz M, et al. Genotype-specific patterns of atrophy progression are more sensitive than clinical decline in SCA1, SCA3 and SCA6. Brain. 2013;136:905–17.
    PubMed Google Scholar
  36. Della Nave R, Ginestroni A, Tessa C, Salvatore E, De Grandis D, Plasmati R, et al. Brain white matter damage in SCA1 and SCA2. An in vivo study using voxel-based morphometry, histogram analysis of mean diffusivity and tract-based spatial statistics. Neuroimage. 2008;43:10–9.
    PubMed Google Scholar
  37. Solodkin A, Peri E, Chen EE, Ben-Jacob E, Gomez CM. Loss of intrinsic organization of cerebellar networks in spinocerebellar ataxia type 1: correlates with disease severity and duration. Cerebellum. 2011;10:218–32.
    PubMed Central PubMed Google Scholar
  38. D’Agata F, Caroppo P, Boghi A, Coriasco M, Caglio M, Baudino B, et al. Linking coordinative and executive dysfunctions to atrophy in spinocerebellar ataxia 2 patients. Brain Struct Funct. 2011;216:275–88.
    PubMed Google Scholar
  39. Schols L, Kruger R, Amoiridis G, Przuntek H, Epplen JT, Riess O. Spinocerebellar ataxia type 6: genotype and phenotype in German kindreds. J Neurol Neurosurg Psychiatry. 1998;64:67–73.
    PubMed Central CAS PubMed Google Scholar
  40. Lukas C, Schols L, Bellenberg B, Rub U, Przuntek H, Schmid G, et al. Dissociation of grey and white matter reduction in spinocerebellar ataxia type 3 and 6: a voxel-based morphometry study. Neurosci Lett. 2006;408:230–5.
    CAS PubMed Google Scholar
  41. Alcauter S, Barrios FA, Diaz R, Fernandez-Ruiz J. Gray and white matter alterations in spinocerebellar ataxia type 7: an in vivo DTI and VBM study. Neuroimage. 2011;55:1–7.
    CAS PubMed Google Scholar
  42. Rolfs A, Koeppen AH, Bauer I, Bauer P, Buhlmann S, Topka H, et al. Clinical features and neuropathology of autosomal dominant spinocerebellar ataxia (SCA17). Ann Neurol. 2003;54:367–75.
    PubMed Google Scholar
  43. Lasek K, Lencer R, Gaser C, Hagenah J, Walter U, Wolters A, et al. Morphological basis for the spectrum of clinical deficits in spinocerebellar ataxia 17 (SCA17). Brain. 2006;129:2341–52.
    CAS PubMed Google Scholar
  44. Reetz K, Kleiman A, Klein C, Lencer R, Zuehlke C, Brockmann K, et al. CAG repeats determine brain atrophy in spinocerebellar ataxia 17: a VBM study. PLoS One. 2011;6:e15125.
    PubMed Central CAS PubMed Google Scholar
  45. Reetz K, Lencer R, Hagenah JM, Gaser C, Tadic V, Walter U, et al. Structural changes associated with progression of motor deficits in spinocerebellar ataxia 17. Cerebellum. 2010;9:210–7.
    PubMed Google Scholar
  46. Reetz K, Dogan I, Rolfs A, Binkofski F, Schulz JB, Laird AR, et al. Investigating function and connectivity of morphometric findings—exemplified on cerebellar atrophy in spinocerebellar ataxia 17 (SCA17). Neuroimage. 2012;62:1354–66.
    PubMed Google Scholar
  47. Hadjivassiliou M, Grünewald RA, Chattopadhyay AK, Davies-Jones GA, Gibson A, Jarratt JA, et al. Clinical, radiological, neurophysiological, and neuropathological characteristics of gluten ataxia. Lancet. 1998;352(9140):1582–5.
    CAS PubMed Google Scholar
  48. Wilkinson ID, Hadjivassiliou M, Dickson JM, Wallis L, Grünewald RA, Coley SC, et al. Cerebellar abnormalities on proton MR spectroscopy in gluten ataxia. J Neurol Neurosurg Psychiatry. 2005;76(7):1011–3.
    PubMed Central CAS PubMed Google Scholar
  49. Currie S, Hoggard N, Clark MJR, Sanders DS, Wilkinson ID, Griffiths PD, et al. Alcohol induces sensitization to gluten in genetically susceptible individuals: a case control study. PLoS One. 2013;8(10):e77638. doi:10.1371/journal.pone.0077638.
    PubMed Central CAS PubMed Google Scholar
  50. Currie S, Hadjivassiliou M, Clark MJ, Sanders DS, Wilkinson ID, Griffiths PD, et al. Should we be ‘nervous’ about coeliac disease? Brain abnormalities in patients with coeliac disease referred for neurological opinion. J Neurol Neurosurg Psychiatry. 2012;83(12):1216–21. doi:10.1136/jnnp-2012-303281.
    PubMed Google Scholar
  51. Honnorat J, Saiz A, Giometto B, Vincent A, Brieva L, de Andres C, et al. Cerebellar ataxia with anti-glutamic acid decarboxylase antibodies: study of 14 patients. Arch Neurol. 2001;58(2):225–30.
    CAS PubMed Google Scholar
  52. Nanri K, Niwa H, Mitoma H, Takei A, Ikeda J, Harada T, et al. Low-titer anti-GAD-antibody-positive cerebellar ataxia. Cerebellum. 2013;12(2):171–5. doi:10.1007/s12311-012-0411-5.
    CAS PubMed Google Scholar
  53. Scheid R, Voltz R, Briest S, et al. Clinical insights into paraneoplastic cerebellar degeneration. J Neurol Neurosurg Psychiatry. 2006;77:529–30.
    PubMed Central CAS PubMed Google Scholar
  54. De Andrés C, Esquivel A, de Villoria JG, et al. Unusual magnetic resonance imaging and cerebrospinal fluid findings in paraneoplastic cerebellar degeneration: a sequential study. J Neurol Neurosurg Psychiatry. 2006;77:562–3.
    PubMed Central PubMed Google Scholar
  55. Choi K-D, Kim JS, Park S-H, et al. Cerebellar hypermetabolism in paraneoplastic cerebellar degeneration. J Neurol Neurosurg Psychiatry. 2006;77:525–8.
    PubMed Central PubMed Google Scholar
  56. Clapp AJ, Hunt CH, Johnson GB, Peller PJ. Semiquantitative analysis of brain metabolism in patients with paraneoplastic neurologic syndromes. Clin Nucl Med. 2013;38(4):241–7.
    PubMed Google Scholar
  57. Hadjivassiliou M, Alder SJ, Van Beek EJR, Hannay MB, Lorenz E, Rao DG, et al. PET scan in clinically suspected paraneoplastic neurological syndromes: a six year prospective study in a regional neuroscience unit. Acta Neurol Scand. 2009;119:186–93.
    CAS PubMed Google Scholar
  58. Hadjivassiliou M, Boscolo S, Tongiorgi E, Grunewald RA, Sharrack B, Sanders DS, et al. Cerebellar ataxia as a possible organ specific autoimmune disease. Mov Disord. 2008;23(10):1270–377.
    Google Scholar
  59. Hadjivassiliou M. Primary autoimmune cerebellar ataxia (PACA). ACNR. 2010;9(6):8–11.
    Google Scholar
  60. Sunaga Y, Hikima A, Ostuka T, Morikawa A. Acute cerebellar ataxia with abnormal MRI lesions after varicella vaccination. Pediatr Neurol. 1995;13(4):340.
    CAS PubMed Google Scholar
  61. De Bruecker Y, Claus F, Demaerel P, Ballaux F, Sciot R, Lagae L, et al. MRI findings in acute cerebellitis. Eur Radiol. 2004;14(8):1478.
    PubMed Google Scholar
  62. Daaboul Y, Vern BA, Blend MJ. Brain SPECT imaging and treatment with IVIg in acute post-infectious cerebellar ataxia: case report. Neurol Res. 1998;20(1):85.
    CAS PubMed Google Scholar
  63. Nagamitsu S, Matsuishi T, Ishibashi M, Yamashita Y, Nishimi T, Ichikawa K, et al. Decreased cerebellar blood flow in postinfectious acute cerebellar ataxia. J Neurol Neurosurg Psychiatry. 1999;67(1):109.
    PubMed Central CAS PubMed Google Scholar
  64. Rapoport M, Reekum R, Mayberg H. The role of the cerebellum in cognition and behavior: a selective review. J Neuropsychiatry Clin Neurosci. 2000;12(2):193–8.
    CAS PubMed Google Scholar
  65. Baldaçara L, Borgio JGF, Moraes WAS, Lacerda ALT, Montaño MBMM, Tufik S, et al. Cerebellar volume in patients with dementia. Rev Bras Psiquiatr. 2011;33(2):122–9.
    PubMed Google Scholar
  66. Schutter DJG, Honk J. The cerebellum in emotion regulation: a repetitive transcranial magnetic stimulation study. Cerebellum. 2009;8:28–34.
    PubMed Google Scholar
  67. Miller TD, Ferguson KJ, Reid LM, Wardlaw JM, Starr JM, Seckl JR, et al. Cerebellar vermis size and cognitive ability in community-dwelling elderly men. Cerebellum. 2013;12:68–73.
    PubMed Google Scholar
  68. Cabeza R, Nyberg L. Imaging cognition II: an empirical review of 275 PET and fMRI studies. J Cogn Neurosci. 2000;12:1–47.
    CAS PubMed Google Scholar
  69. Ramnani N. The primate cortico-cerebellar system: anatomy and function. Nat Rev Neurosci. 2006;7(7):511–22.
    CAS PubMed Google Scholar
  70. Hokkanen LSK, Kauranen V, Roine RO, Salonen O, Kotila M. Subtle cognitive deficits after cerebellar infarcts. Eur J Neurol. 2006;13(2):161–70.
    CAS PubMed Google Scholar
  71. Ravizza SM, McCornick CA, Schlerf JE, Justus T, Ivry RB, Fiez JA. Cerebellar damage produces selective deficits in verbal working memory. Brain. 2006;129:306–20.
    PubMed Google Scholar
  72. Tadesco AM, Chiricozzi FR, Clausi S, Lupo M, Molinari M, Leggio MG. The cerebellar cognitive profile. Brain. 2011;134(Pt 12):3672–86.
    Google Scholar
  73. Woodruff-Park DS, Vogel RW, Ewers M, Coffey J, Boyko OB, Lemieux SK. MRI-assessed volume of cerebellum correlates with associative learning. Neurobiol Learn Mem. 2001;76(3):342–57.
    Google Scholar
  74. Luft AR, Skalej M, Schulz JB, Welte D, Kolb R, Burk K, et al. Patterns of age-related shrinkage in cerebellum and brainstem observed in vivo using three-dimensional MRI volumetry. Cereb Cortex. 1999;9(7):712–21.
    CAS PubMed Google Scholar
  75. Wegiel J, Wisniewski HM, Dziewiatkowski J, Badmajew E, Tarnawski M, Reisberg B, et al. Cerebellar atrophy in Alzheimer’s disease—clinicopathological correlations. Brain Res. 1999;818(1):41–50.
    CAS PubMed Google Scholar
  76. Sjobeck M, Englund E. Alzheimer’s disease and the cerebellum: a morphologic study on neuronal and glial changes. Dement Geriatr Cogn Disord. 2001;12(3):211–8.
    CAS PubMed Google Scholar
  77. Thomann PA, Schlafer C, Seidl U, Santos VD, Essig M, Schroder J. The cerebellum in mild cognitive impairment and Alzheimer’s disease—a structural MRI study. J Psychiatr Res. 2008;42(14):1198–202.
    PubMed Google Scholar
  78. Rombouts SA, van Swieten JC, Pijnenburg YA, Goekoop R, Barkhof F, Scheltens P. Loss of frontal fMRI activation in early frontotemporal dementia compared to early AD. Neurology. 2003;60(12):1904–8.
  79. Yoon CW, Seo SW, Park J, Kwak KC, Yoon U, Suh MK, et al. Cerebellar atrophy in patients with subcortical-type vascular cognitive impairment. Cerebellum. 2013;12:35–42.
    PubMed Google Scholar
  80. Whitwell JL, Weigand SD, Boeve BF, Senjem ML, Gunter JL, DeJesus-Hernandez M, et al. Neuroimaging signatures of frontotemporal dementia genetics: C9ORF72, tau, progranulin and sporadics. Brain. 2012;135(Pt 3):794–806.
    PubMed Central PubMed Google Scholar
  81. Wu T, Hallett M. The cerebellum in Parkinson’s disease. Brain. 2013;136(Pt 3):696–709.
    PubMed Google Scholar
  82. Scharmüller W, Ille R, Schienle A. Cerebellar contribution to anger recognition deficits in Huntington’s disease. Cerebellum. 2013;12(6):819–25.
    PubMed Google Scholar
  83. Andersen K, Andersen BB, Pakkenberg B. Stereological quantification of the cerebellum in patients with Alzheimer’s disease. Neurobiol Aging. 2012;33(1):197.e111–120.
    Google Scholar
  84. Canu E, McLaren DG, Fitzgerald ME, Bendlin BB, Zoccatelli G, Alessandrini F, et al. Microstructural diffusion changes are independent of macrostructural volume loss in moderate to severe Alzheimer’s disease. J Alzheimers Dis. 2010;19(3):963–76.
    PubMed Central PubMed Google Scholar
  85. Moller C, Vrenken H, Jiskoot L, Versteeg A, Barkhof F, Scheltens P, et al. Different patterns of gray matter atrophy in early- and late-onset Alzheimer’s disease. Neurobiol Aging. 2013;34(8):2014–22.
    PubMed Google Scholar
  86. Bas O, Acer N, Mas N, Karabekir HS, Kusbeci OY, Sahin B. Stereological evaluation of the volume and volume fraction of intracranial structures in magnetic resonance images of patients with Alzheimer’s disease. Ann Anat Anat Anz Off Organ Anat Ges. 2009;191(2):186–95.
    Google Scholar
  87. Ishii K, Sasaki M, Kitagaki H, Yamaji S, Sakamoto S, Matsuda K, et al. Reduction of cerebellar glucose metabolism in advanced Alzheimer’s disease. J Nucl Med. 1997;38(6):925–8.
    CAS PubMed Google Scholar
  88. Vidoni ED, Thomas GP, Honea RA, Loskutova N, Burns JM. Evidence of altered corticomotor system connectivity in early-stage Alzheimer’s disease. J Neurol Phys Ther JNPT. 2012;36(1):8–16.
    Google Scholar
  89. Nocuń A, Wojcza J, Szczepańska-Szerej H, Wilczyński M, Chrapko B. Quantitative evaluation of crossed cerebellar diaschisis, using voxel-based analysis of Tc-99m ECD brain SPECT. Nucl Med Rev Cent East Eur. 2013;16(1):31–4.
    PubMed Google Scholar
  90. Sui R, Zhang L. Cerebellar dysfunction may play an important role in vascular dementia. Med Hypotheses. 2012;78(1):162–5. doi:10.1016/j.mehy.2011.10.017.
    PubMed Google Scholar
  91. Jacova C, Hsiung GY, Tawankanjanachot I, Dinelle K, McCormick S, Gonzalez M, et al. Anterior brain glucose hypometabolism predates dementia in progranulin mutation carriers. Neurology. 2013;81(15):1322–31.
    PubMed Central CAS PubMed Google Scholar
  92. Asokan AG, D’souza S, Jeganathan Pai S. Fahr’s syndrome—an interesting case presentation. J Clin Diagn Res. 2013;7(3):532–3.
    PubMed Central PubMed Google Scholar
  93. Calabrò RS, Spadaro L, Marra A, Bramanti P. Fahr’s disease presenting with dementia at onset: a case report and literature review. Behav Neurol. 2014;Article ID 750975, 3 pages. doi:10.1155/2014/75097.
  94. Cohen OS, Hoffman C, Lee H, Champman J, Fulbright RK, Prohovnik I. MRI detection of the cerebellar syndrome in Creutzfeldt-Jackob Disease. Cerebellum. 2009;8:373–81.
    PubMed Google Scholar
  95. Young GS, Geschwind MD, Fischbein NJ, Martindale JL, Henry RG, Liu S. Diffusion weighted and fluid-attenuated inversion recovery imaging in Creutzfeldt-Jakob disease: high sensitivity and specificity for diagnosis. AJNR Am J Neuroradiol. 2005;26:1551–62.
    PubMed Google Scholar
  96. Ferrer I, Puig B, Blanco R, Martí E. Prion protein deposition and abnormal synaptic protein expression in the cerebellum in Creutzfeldt-Jakob disease. Neuroscience. 2000;97(4):715–26.
    CAS PubMed Google Scholar
  97. Brown P, Kenney K, Little B, Ironside J, Will R, Cervenáková L. Intracerebral distribution of infectious amyloid protein in spongiform encephalopathy. Ann Neurol. 1995;38:245–53.
    CAS PubMed Google Scholar
  98. Tanaka S, Saito M, Morimatsu M, Ohama E. Immunohistochemical studies of the PrP(CJD) deposition in Creutzfeldt-Jakob disease. Neuropathology. 2000;20:124–33.
    CAS PubMed Google Scholar
  99. Cooper SA, Murray KL, Heath CA, Will RG, Knight RS. Sporadic Creutzfeldt-Jakob disease with cerebellar ataxia at onset in the UK. J Neurol Neurosurg Psychiatry. 2006;77:1273–5.
    PubMed Central CAS PubMed Google Scholar
  100. Ortega-Cuberoa S, Luquína MR, Domínguezb I, Arbizub I, Pagolaa J, Carmona-Abellána MM, et al. Structural and functional neuroimaging in human prion diseases. Neurologia. 2013;28:299–308.
    Google Scholar
  101. Ramos LR, Simoes EJ, Albert MS. Dependence in activities of daily living and cognitive impairment strongly predicted mortality in older urban residents in Brazil: a 2-year follow-up. J Am Geriatr Soc. 2001;49(9):1168–75.
    CAS PubMed Google Scholar
  102. Fatemi SH, Aldinger KA, Ashwood P, Bauman ML, Blaha CD, Blatt GJ, et al. Consensus paper: pathological role of the cerebellum in autism. Cerebellum. 2012;11(3):777–807.
    PubMed Central PubMed Google Scholar
  103. Stoodley CJ, Schmahmann JD. Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex. 2010;46:831–44.
    PubMed Central PubMed Google Scholar
  104. Skefos J, Cummings C, Enzer K, Holiday J, Weed K, Levy E, et al. Regional alterations in Purkinje cell density in patients with autism. PLoS One. 2014;9:e81255.
    PubMed Central PubMed Google Scholar
  105. Fatemi SH, Stary JM, Halt AR, Realmuto GR. Dysregulation of Reelin and Bcl-2 proteins in autistic cerebellum. J Autism Dev Disord. 2001;31:529–35.
    CAS PubMed Google Scholar
  106. Gharani N, Benayed R, Mancuso V, Brzustowicz LM, Millonig JH. Association of the homeobox transcription factor, ENGRAILED 2, 3, with autism spectrum disorder. Mol Psychiatry. 2004;9(5):474–84.
    CAS PubMed Google Scholar
  107. Kuemerle B, Gulden F, Cherosky N, Williams E, Herrup K. The mouse Engrailed genes: a window into autism. Behav Brain Res. 2007;176(1):121–32.
    PubMed Central CAS PubMed Google Scholar
  108. Cheh MA, Millonig JH, Roselli LM, Ming X, Jacobsen E, Kamdar S, et al. En2 knockout mice display neurobehavioral and neurochemical alterations relevant to autism spectrum disorder. Brain Res. 2006;1116(1):166–76.
    CAS PubMed Google Scholar
  109. Ieraci A, Forni PE, Ponzetto C. Viable hypomorphic signaling mutant of the Met receptor reveals a role for hepatocyte growth factor in postnatal cerebellar development. Proc Natl Acad Sci. 2002;99(23):15200–5.
    PubMed Central CAS PubMed Google Scholar
  110. Sousa I, Clark TG, Toma C, Kobayashi K, Choma M, Holt R, et al. MET and autism susceptibility: family and case–control studies. Eur J Hum Genet. 2009;17(6):749–58.
    PubMed Central CAS PubMed Google Scholar
  111. Vargas DL, Nascimbene C, Krishnan C, Zimmerman AW, Pardo CA. Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann Neurol. 2005;57(1):67–81.
    CAS PubMed Google Scholar
  112. Fatemi SH, Folsom TD, Reutiman TJ, Thuras PD. Expression of GABAB receptors is altered in brains of subjects with autism. Cerebellum. 2009;8(1):64–9.
    PubMed Central CAS PubMed Google Scholar
  113. Fatemi SH, Reutiman TJ, Folsom TD, Huang H, Oishi K, Mori S, et al. Maternal infection leads to abnormal gene regulation and brain atrophy in mouse offspring: implications for genesis of neurodevelopmental disorders. Schizophr Res. 2008;99(1):56–70.
    PubMed Central PubMed Google Scholar
  114. Courchesne E, Webb SJ, Schumann CM. From toddlers to adults: the changing landscape of the brain in autism. In: Amaral D, Geschwind D, Dawson G, editors. Autism spectrum disorders. Oxford: Oxford University Press; 2011. p. 611–31.
    Google Scholar
  115. Stanfield AC, McIntosh AM, Spencer MD, Philip R, Gaur S, Lawrie SM. Towards a neuroanatomy of autism: a systematic review and meta-analysis of structural magnetic resonance imaging studies. Eur Psychiatry. 2008;23(4):289–99.
    PubMed Google Scholar
  116. Verly M, Verhoeven J, Zink I, Mantini D, Peeters R, Deprez S, et al. Altered functional connectivity of the language network in ASD: role of classical language areas and cerebellum. NeuroImage Clin. 2014;4:374–82.
    PubMed Central PubMed Google Scholar
  117. Catani M, Jones DK, Daly E, Embiricos N, Deeley Q, Pugliese L, et al. Altered cerebellar feedback projections in Asperger syndrome. Neuroimage. 2008;41(4):1184–91.
    PubMed Google Scholar
  118. Cleavinger HB, Bigler ED, Johnson JL, Lu J, McMahon W, Lainhart JE. Quantitative magnetic resonance image analysis of the cerebellum in macrocephalic and normocephalic children and adults with autism. J Int Neuropsychol Soc. 2008;14(03):401–13.
    PubMed Google Scholar
  119. Pierce K, Courchesne E. Evidence for a cerebellar role in reduced exploration and stereotyped behavior in autism. Biol Psychiatry. 2001;49(8):655–64.
    CAS PubMed Google Scholar
  120. Cheung C, Chua SE, Cheung V, Khong PL, Tai KS, Wong TKW, et al. White matter fractional anisotrophy differences and correlates of diagnostic symptoms in autism. J Child Psychol Psychiatry. 2009;50(9):1102–12.
    CAS PubMed Google Scholar
  121. Kates WR, Burnette CP, Eliez S, Strunge LA, Kaplan D, Landa R, et al. Neuroanatomic variation in monozygotic twin pairs discordant for the narrow phenotype for autism. Am J Psychiatr. 2004;161(3):539–46.
    PubMed Google Scholar
  122. Webb SJ, Sparks BF, Friedman SD, Shaw DW, Giedd J, Dawson G, et al. Cerebellar vermal volumes and behavioral correlates in children with autism spectrum disorder. Psychiatry Res Neuroimaging. 2009;172(1):61–7.
    Google Scholar
  123. Wang P, Erickson CA, Ginsberg G, Rathmell B, Cerubini M, Zarevics P. Of STX209 (arbaclofen) on social and communicative function in ASD: results of an 8 week open label trial. San Diego: International Meeting for Autism Research; 2011.
    Google Scholar
  124. Ji L, Chauhan A, Brown WT, Chauhan V. Increased activities of Na+/K+−ATPase and Ca2+/Mg2+−ATPase in the frontal cortex and cerebellum of autistic individuals. Life Sci. 2009;85:788–93.
    PubMed Central CAS PubMed Google Scholar
  125. Anheim M, Tranchant C, Koenig M. The autosomal recessive cerebellar ataxias. N Engl J Med. 2012;366:636–46.
    CAS PubMed Google Scholar
  126. Brancati F, Dallapiccola B, Valente EM. Joubert syndrome and related disorders. Orphanet J Rare Dis. 2010;5:20.
    PubMed Central PubMed Google Scholar
  127. Poretti A, Huisman TA, Scheer I, Boltshauser E. Joubert syndrome and related disorders: spectrum of neuroimaging findings in 75 patients. AJNR Am J Neuroradiol. 2011;32:1459–63.
    CAS PubMed Google Scholar
  128. Wallis LI et al. Proton spectroscopy and imaging at 3 T in ataxia-telangiectasia. AJNR Am J Neuroradiol. 2007;28:79–83.
    CAS PubMed Google Scholar
  129. Prodi E, Grisoli M, Panzeri M, Minati LF, Fattori F, Erbetta A, et al. Supratentorial and pontine MRI abnormalities characterize recessive spastic ataxia of Charlevoix-Saguenay. A comprehensive study of an Italian series. Eur J Neurol. 2013;20:138–46.
    CAS PubMed Google Scholar
  130. Rafiq M, Sharrack N, Shaw PI, Hadjivassiliou M. A neurological rarity not to be missed: cerebrotendinous xanthomatosis. Pract Neurol. 2011;11:296–300.
  131. Della Nave R, Ginestroni A, Tessa C, Salvatore E, Bartolomei I, Salvi F, et al. Brain white matter tracts degeneration in Friedreich ataxia. An in vivo MRI study using tract-based spatial statistics and voxel based morphometry. Neuroimage. 2008;40:19–25.
    PubMed Google Scholar
  132. Pagani E, Ginestroni A, Della Nave R, Agosta F, Salvi F, De Michele G, et al. Assessment of brain white matter fibre bundle atrophy in patients with Friedreich’s ataxia. Radiology. 2010;255:882–9.
    PubMed Google Scholar
  133. Akhlaghi H, Corben L, Georgiou-Karistianis N, Bradshaw J, Storey E, Delatycki MB, et al. Superior cerebellar peduncle atrophy in Friedreich’s ataxia correlates with disease symptoms. Cerebellum. 2011;10:81–7.
    PubMed Google Scholar
  134. Akhlaghi H, Yu J, Corben L, Georgiou-Karistianis N, Bradshaw JL, Storey E, et al. Cognitive deficits in Friedreich ataxia correlate with micro-structural changes in dentatorubral tract. Cerebellum. 2014;13:187–98.
    CAS PubMed Google Scholar
  135. Corben LA, Kashuk SR, Akhlaghi H, Jamadar S, Delatycki MB, Fielding J, et al. Myelin paucity of the superior cerebellar peduncle in individuals with Friedreich ataxia: an MRI magnetization transfer imaging study. J Neurol Sci. 2014. doi:10.1016/j.jns.2014.05.057.
    PubMed Google Scholar
  136. Gilman S, Junck L, Markel DS, Koeppe RA, Kluin KJ. Cerebral glucose hypermetabolism in Friedreich’s ataxia detected with positron emission tomography. Ann Neurol. 1990;28:750–7.
    CAS PubMed Google Scholar
  137. Iltis I, Hutter D, Bushara KO, Clark B, Gross M, Eberly LE, et al. 1H MR spectroscopy in Friedreich’s ataxia and ataxia with oculomotor apraxia type 2. Brain Res. 2010;1358:200–10.
    PubMed Central CAS PubMed Google Scholar
  138. De Stefano N, Dotti MT, Mortilla M, Federico A. Magnetic resonance imaging and spectroscopic changes in brain of patients with cerebrotendineous xanthomatosis. Brain. 2001;124:121–31.
    PubMed Google Scholar
  139. Walterfang M, Fahey M, Abel L, Fietz M, Wood A, Bowman E, et al. Size and shape of the corpus callosum in adult Niemann–Pick type C reflects state and trait illness variables. AJNR Am J Neuroradiol. 2011;32:1340–6.
    CAS PubMed Google Scholar
  140. Walterfang M, Abel LA, Desmond P, Fahey MC, Bowman EA, Velakoulis D. Cerebellar volume correlates with saccadic gain and ataxia in adult Niemann-Pick type C. Mol Genet Metab. 2013;108:85–9.
    CAS PubMed Google Scholar
  141. Tedeschi G, Bonavita S, Barton NW, Bertolino A, Frank JA, Patronas NJ, et al. Proton magnetic resonance spectroscopic imaging in the clinical evaluation of patients with Niemann-Pick type C disease. J Neurol Neurosurg Psychiatry. 1998;65:72–9.
    PubMed Central CAS PubMed Google Scholar
  142. Brunberg JA, Jacquemont S, Hagerman RJ, Berry-Kravis EM, Grigsby J, Leehey MA, et al. Fragile X premutation carriers: characteristic MR imaging findings of adult male patients with progressive cerebellar and cognitive dysfunction. AJNR Am J Neuroradiol. 2002;23:1757–66.
    PubMed Google Scholar
  143. Apartis E, Blancher A, Meissner WG, Guyant-Maréchal L, Maltête D, De Broucker T, et al. FXTAS: new insights and the need for revised diagnostic criteria. Neurology. 2012;79:1898–907.
    PubMed Google Scholar
  144. Ginestroni A, Guerrini L, Della Nave R, Tessa C, Cellini E, Dotti MT, et al. Morphometry and 1H- MR spectroscopy of the brainstem and cerebellum in three patients with fragile-X premutation. AJNR Am J Neuroradiol. 2007;28:486–8.
    CAS PubMed Google Scholar
  145. Hashimoto R, Javan AK, Tassone F, Hagerman RJ, Rivera SM. A voxel-based morphometry study of grey matter loss in fragile X-associated tremor/ataxia syndrome. Brain. 2011;134:863–78.
    PubMed Central PubMed Google Scholar
  146. Scaglione C, Ginestroni A, Vella A, Dotti MT, Della Nave R, Rizzo G, et al. MRI and SPECT of midbrain and striatal degeneration in fragile X-associated tremor/ataxia syndrome. J Neurol. 2008;255:144–6.
    PubMed Google Scholar
  147. Parker CC, Evans OB. Metabolic disorders causing childhood ataxia. Semin Pediatr Neurol. 2003;10(3):193–9.
    PubMed Google Scholar
  148. Barkovitch AJ. An approach to MRI of metabolic disorders in children. Approche IRM des maladies métaboliques de l’enfant. J Neuroradiol (Paris). 2007;34:75–88.
    Google Scholar
  149. Beitzke D, Simbrunner J, Riccabona M. MRI in paediatric hypoxic-ischemic disease, metabolic disorders and malformations—a review. Eur J Radiol. 2008;68:199–213.
    PubMed Google Scholar
  150. Pouwels JW, Vanderver A, Bernard G, Wolf Ni, Dreha-Kulczewksi SF, Deoni SCL, et al. Hypomyelinating leukodsystrophies: translational research progress and prospects. Ann Neurol. 2014.
  151. Bricout M, Grévent D, Lebre AS, Rio M, Desguerre I, De Lonlay P, et al. Brain imaging in mitochondrial respiratory chain deficiency: combination of brain MRI features as a useful tool for genotype/phenotype correlations. J Med Genet. 2014;51:429–35.
    CAS PubMed Google Scholar
  152. Eichler F, Itoh R, Barker P, Mori S, Garrett ES, van Zijl PC, et al. Proton MR spectroscopic and diffusion tensor brain MR imaging in X-linked adrenoleucodystrophy: initial experience. Radiology. 2002;225(1):245–52.
    PubMed Google Scholar
  153. Bianchi MC, Sgandurra G, Tosetti M, Battini R, Cioni G. Brain magnetic resonance in the diagnostic of mitochondrial encephalopathies. Biosci Rep. 2007;27(1–3):69–85.
    CAS PubMed Google Scholar
  154. Boddaert N, Romano S, Funalot B, Rio M, Sarzi E, et al. 1H MRS spectroscopy evidence of cerebellar high lactate in mitochondrial respiratory chain deficiency. Mol Genet Metab. 2008;93(1):85–8.
    CAS PubMed Google Scholar
  155. Steenweg ME, Vanderver A, Blaser S, Bizzi A, de Koning TJ, et al. Magnetic resonance imaging pattern recognition in hypomyelinating disorders. Brain. 2010;133:2971–82.
    PubMed Central PubMed Google Scholar
  156. Ciolli L, Krismer F, Nicoletti F, Wenning GK. An update on the cerebellar subtype of multiple system atrophy. Cerebellum. 2014; in press.
  157. Gilman S, Wenning GK, Low PA, Brooks DJ, Mathias CJ, et al. Second consensus statement on the diagnosis of multiple system atrophy. Neurology. 2008;71:670–6.
    PubMed Central CAS PubMed Google Scholar
  158. D’Abreu A, Cendes F. Neuroimaging of ataxia. Curr Clin Neurol. 2013;44:227–45.
    Google Scholar
  159. Minnerop M, Lûders E, Specht K, Schimke N, Thompson PM, Chou YY, et al. Callosal tissues loss in multiple system atrophy—a one year follow-up study. Mov Disord. 2010;25:2613–20.
    PubMed Central PubMed Google Scholar
  160. Matsusue E, Fujii S, Kanasaki Y, Ohama E, Ogawa T. Cerebellar lesions in multiple system atrophy: postmortem MR imaging-pathologic correlations. AJNR Am J Neuroradiol. 2009;30:1725–30.
    CAS PubMed Google Scholar
  161. Matsusue E, Fujii S, Kanasaki Y, Sugihara S, Miyata H, Ohama E, et al. Putaminal lesion in multiple system atrophy: postmortem MR-pathological correlations. Neuroradiology. 2008;50:559–67.
    PubMed Google Scholar
  162. Specht K, Minnerop M, Müller-Hübenthal J, Klockgether T. Voxel-based analysis of multiple-system atrophy of cerebellar type: complementary results by combining voxel-based morphometry and voxel-based relaxometry. Neuroimage. 2005;25:287–93.
    PubMed Google Scholar
  163. Loh KB, Rahmat K, Lim S-Y, Ramli N. A hot cross bun sign from diffusion tensor imaging and tractography perspective. Neurol India. 2011;59:266–9.
    PubMed Google Scholar
  164. Yang H, Wang X, Liao W, Zhou G, Li L, Ouyang L. Application of tensor diffusion imaging in multiple system atrophy: the involvement of pontine transverse and longitudinal fibers. Int J Neurosci. 2014; in press.
  165. Boesch SM, Wolf C, Seppi K, Felber S, Wenning GK, Schocke M. Differentiation of SCA2 from MSA-C using proton magnetic resonance spectroscopic imaging. J Magn Reson Imaging. 2007;25:564–9.
    PubMed Google Scholar
  166. Kimura N, Kumamoto T, Nomura T, Hazama Y, Okazaki T. Evaluation of regional cerebral blood flow in cerebellar variant of multiple system atrophy using FineSRT. Clin Neurol Neurosurg. 2009;111:829–34.
    PubMed Google Scholar
  167. Mazere J, Meissner WG, Sibon I, Lamare F, Tison F, Allard M, et al. [(123)I]-IBVM SPRECT imaging of cholinergic systems in multiple systems atrophy: a specific alteration of the ponto-thalamic cholinergic pathways (Ch5-Ch6). NeuroImage Clin. 2013;3:212–7.
    PubMed Central PubMed Google Scholar
  168. Schulz JB, Klockgether T, Petersen D, Jauch M, Müller-Schauenburg W, Spieker S, et al. Multiple system atrophy: Natural history, MRI morphology and dopamine receptor imaging with 123IBZM-SPECT. J Neurol Neurosurg Psychiat. 1994;57:1047–56.
  169. Hauser T, Luft A, Skalej M, Nägele T, Kircher T, Leube D, et al. Visualization and quantification of disease progression in multiple system atrophy. Mov Dis. 2006;18:85–92.
  170. Abele M, Bûrk K, Schölsl, Schwartz S, Besenthal I, Dichgans J, et al. The aetiology of sporadic adult-onset ataxia. Brain. 2002;15:961–8.
    Google Scholar
  171. Burk K, Globas C, Wahl T, Bürhing U, Dietz K, Zuhlke C, et al. MRI-based volumetric differentiation of sporadic cerebellar ataxia. Brain. 2004;127:175–81.
    CAS PubMed Google Scholar

Download references