Simon, T. G., Roelstraete, B., Hagström, H., Sundström, J., & Ludvigsson, J. F. (2022). Non-alcoholic fatty liver disease and incident major adverse cardiovascular events: Results from a nationwide histology cohort. Gut,71(9), 1867–1875. https://doi.org/10.1136/gutjnl-2021-325724 ArticlePubMed Google Scholar
Ballestri, S., Romagnoli, D., Nascimbeni, F., Francica, G., & Lonardo, A. (2015). Role of ultrasound in the diagnosis and treatment of nonalcoholic fatty liver disease and its complications. Expert Review of Gastroenterology & Hepatology, 9(5), 603–627. https://doi.org/10.1586/17474124.2015.1007955 ArticleCAS Google Scholar
Park, C. C., Nguyen, P., Hernandez, C., Bettencourt, R., Ramirez, K., Fortney, L., Hooker, J., Sy, E., Savides, M. T., Alquiraish, M. H., Valasek, M. A., Rizo, E., Richards, L., Brenner, D., Sirlin, C. B., & Loomba, R. (2017). Magnetic resonance elastography vs transient elastography in detection of fibrosis and noninvasive measurement of steatosis in patients with Biopsy-Proven nonalcoholic fatty liver disease. Gastroenterology, 152(3), 598–607e592. https://doi.org/10.1053/j.gastro.2016.10.026 ArticlePubMed Google Scholar
Hernaez, R., Lazo, M., Bonekamp, S., Kamel, I., Brancati, F. L., Guallar, E., & Clark, J. M. (2011). Diagnostic accuracy and reliability of ultrasonography for the detection of fatty liver: A meta-analysis. Hepatology,54(3), 1082–1090. https://doi.org/10.1002/hep.24452 ArticlePubMed Google Scholar
Cao, W., An, X., Cong, L., Lyu, C., Zhou, Q., & Guo, R. (2020). Application of deep learning in quantitative analysis of 2-dimensional ultrasound imaging of nonalcoholic fatty liver disease. Journal of Ultrasound in Medicine,39(1), 51–59. https://doi.org/10.1002/jum.15070 ArticlePubMed Google Scholar
Byra, M., Styczynski, G., Szmigielski, C., Kalinowski, P., Michałowski, Ł, Paluszkiewicz, R., Ziarkiewicz-Wróblewska, B., Zieniewicz, K., Sobieraj, P., & Nowicki, A. (2018). Transfer learning with deep convolutional neural network for liver steatosis assessment in ultrasound images. International Journal of Computer Assisted Radiology and Surgery,13(12), 1895–1903. https://doi.org/10.1007/s11548-018-1843-2 ArticlePubMedPubMed Central Google Scholar
Liu, F., Goh, G. B. B., Tiniakos, D., Wee, A., Leow, W. Q., Zhao, J. M., Rao, H. Y., Wang, X. X., Wang, Q., & Wan, W. K. (2020). qFIBS: An automated technique for quantitative evaluation of fibrosis, inflammation, ballooning, and steatosis in patients with nonalcoholic steatohepatitis. Hepatology,71(6), 1953–1966. ArticlePubMedCAS Google Scholar
Gheorghe, E. C., Nicolau, C., Kamal, A., Udristoiu, A., Gruionu, L., & Saftoiu, A. (2023). Artificial intelligence (AI)-enhanced ultrasound techniques used in non-alcoholic fatty liver disease: Are they ready for prime time? Applied Sciences,13(8), Article 5080. ArticleCAS Google Scholar
S, R. (2018). 2020 Nov 11). Model evaluation, model selection, and algorithm selection in machine learning arXiv. https://arxiv.org/abs/1811.12808
Pu, K., Wang, Y., Bai, S., Wei, H., Zhou, Y., Fan, J., & Qiao, L. (2019). Diagnostic accuracy of controlled attenuation parameter (CAP) as a non-invasive test for steatosis in suspected non-alcoholic fatty liver disease: A systematic review and meta-analysis. BMC Gastroenterology,19(1), Article 51. https://doi.org/10.1186/s12876-019-0961-9 ArticlePubMedPubMed Central Google Scholar
Yoo, J. J., Yoo, Y. J., Moon, W. R., Kim, S. U., Jeong, S. W., Park, H. N., Park, M. G., Jang, J. Y., Park, S. Y., Kim, B. K., Park, J. Y., Kim, D. Y., Ahn, S. H., Han, K. H., Kim, S. G., Kim, Y. S., Kim, J. H., Yeon, J. E., & Byun, K. S. (2020). Correlation of the grade of hepatic steatosis between controlled attenuation parameter and ultrasound in patients with fatty liver: A multi-center retrospective cohort study. Korean Journal of Internal Medicine,35(6), 1346–1353. https://doi.org/10.3904/kjim.2018.309 ArticlePubMed Google Scholar
Decharatanachart, P., Chaiteerakij, R., Tiyarattanachai, T., & Treeprasertsuk, S. (2021). Application of artificial intelligence in non-alcoholic fatty liver disease and liver fibrosis: A systematic review and meta-analysis. Therapeutic Advances in Gastroenterology, 14, 17562848211062807. ArticlePubMedPubMed CentralCAS Google Scholar
Alshagathrh, F. M., & Househ, M. S. (2022). Artificial intelligence for detecting and quantifying fatty liver in ultrasound images: A systematic review. Bioengineering,9(12), Article 748. ArticlePubMedPubMed Central Google Scholar
Acharya, U. R., Sree, S. V., Ribeiro, R., Krishnamurthi, G., Marinho, R. T., Sanches, J., & Suri, J. S. (2012). Data mining framework for fatty liver disease classification in ultrasound: A hybrid feature extraction paradigm. Medical Physics,39(7), 4255–4264. https://doi.org/10.1118/1.4725759 ArticlePubMed Google Scholar
Zamanian, H., Mostaar, A., Azadeh, P., & Ahmadi, M. (2021). Implementation of combinational deep learning algorithm for non-alcoholic fatty liver classification in ultrasound images. Journal of Biomedical Physics & Engineering,11(1), 73–84. https://doi.org/10.31661/jbpe.v0i0.2009-1180 ArticleCAS Google Scholar
Han, A., Byra, M., Heba, E., Andre, M. P., Erdman, J. W. Jr., Loomba, R., Sirlin, C. B., & O’Brien, W. D. Jr. (2020). Noninvasive diagnosis of nonalcoholic fatty liver disease and quantification of liver fat with radiofrequency ultrasound data using One-dimensional convolutional neural networks. Radiology, 295(2), 342–350. https://doi.org/10.1148/radiol.2020191160 ArticlePubMed Google Scholar
Gaber, A., Youness, H. A., Hamdy, A., Abdelaal, H. M., & Hassan, A. M. (2022). Automatic classification of fatty liver disease based on supervised learning and genetic algorithm. Applied Sciences,12(1), Article 521. ArticleCAS Google Scholar