Arbuscular Mycorrhizal Colonization Promotes the Tolerance to Salt Stress in Lettuce Plants through an Efficient Modification of Ionic Balance (original) (raw)
Abstract
Soil salinity is the biggest problem which hinders the productivity of agricultural crops, causing adverse effects on plant growth and development. In this regard, it has been shown that the arbuscular mycorrhizal fungi (AMF) can establish a symbiosis with most agricultural plants improving water and nutrient absorption under salinity stress conditions. The functional contribution of AMF strains (Claroideoglomus claroideum (Cc) and a native consortium of AMF (HM) isolated from saline soils) on the growth and nutrition of lettuce plants (Lactuca sativa var_. longifolia_) was evaluated under increasing salt stress conditions (0, 40, and 80 mM NaCl). At 60 days of growth, biomass production, nutrient content (N, P), ions (Ca2+, Mg2+, Na+, K+), chlorophyll, proline content, and AMF propagules were evaluated. The highest growth was observed in plants inoculated with Cc, which produced a higher percentage of root colonization and hyphal length at all levels of salinity, compared to plants inoculated with HM or non-inoculated plants. These results were directly related to higher biomass production, increased synthesis of proline, increased N uptake, and noticeable changes in ionic relations, based in a diminishing Na+, compared to non-mycorrhizal plants. Our results suggest that this improved ionic balance is due to a filtering effect of AMF structures both in the soil and in the root that prevents the entry of toxic Na+ ions, which is important due to the level of lettuce production on saline soils improving the crop by means of directed inoculation with efficient AMF strains.
Access this article
Subscribe and save
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime Subscribe now
Buy Now
Price excludes VAT (USA)
Tax calculation will be finalised during checkout.
Instant access to the full article PDF.
Similar content being viewed by others
References
- Abdel Latef AAH, He C (2011) Effect of arbuscular mycorrhizal fungi on growth, mineral nutrition, antioxidant enzymes activity and fruit yield of tomato grown under salinity stress. Sci Hortic 127(3):228–233. https://doi.org/10.1016/j.scienta.2010.09.020
Article CAS Google Scholar - Aliasgharzadeh N, Saleh Rastin N, Towfighi H, Alizadeh A (2001) Occurrence of arbuscular mycorrhizal fungi in saline soils of the Tabriz plain of Iran in relation to some physical and chemical properties of soil. Mycorrhiza 11(3):119–122. https://doi.org/10.1007/s005720100113
Article CAS Google Scholar - Aroca R, Ruiz-Lozano JM, Zamarreño á M, Paz JA, García-Mina JM, Pozo MJ, López-Ráez JA (2013) Arbuscular mycorrhizal symbiosis influences strigolactone production under salinity and alleviates salt stress in lettuce plants. J Plant Physiol 170(1):47–55. https://doi.org/10.1016/j.jplph.2012.08.020
Article CAS PubMed Google Scholar - Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59(2):206–216. https://doi.org/10.1016/J.ENVEXPBOT.2005.12.006
Article CAS Google Scholar - Azcón R, Barea JM (2010) Mycorrhizosphere interactions for legume improvement. In: Khan MS, Musarrat J, Zaidi A (eds) Microbes for Legume Improvement. Springer Vienna, Vienna, p 237–271. https://doi.org/10.1007/978-3-211-99753-6_10
- Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39(1):205–207. https://doi.org/10.1007/BF00018060
Article CAS Google Scholar - Benito B, Haro R, Amtmann A, Cuin TA, Dreyer I (2014) The twins K+ and Na+ in plants. J Plant Physiol 171(9):723–731. https://doi.org/10.1016/j.jplph.2013.10.014
Article CAS PubMed Google Scholar - Borie FR, Rubio R, Morales A, Castillo C (2000) Relationships between arbuscular mycorrhizal hyphal density and glomalin production with physical and chemical characteristics of soils under no-tillage. Rev Chil Hist Nat 73:749–756
Article Google Scholar - Campagnac E, Khasa DP (2014) Relationship between genetic variability in Rhizophagus irregularis and tolerance to saline conditions. Mycorrhiza 24(2):121–129. https://doi.org/10.1007/s00572-013-0517-8
Article CAS PubMed Google Scholar - Chandrasekaran M, Boughattas S, Hu S, Oh SH, Sa T (2014) A meta-analysis of arbuscular mycorrhizal effects on plants grown under salt stress. Mycorrhiza 24(8):611–625. https://doi.org/10.1007/s00572-014-0582-7
Article CAS PubMed Google Scholar - Copeman RH, Martin CA, Stutz JC (1996) Tomato growth in response to salinity and mycorrhizal fungi from saline or nonsaline soils. HortScience 31(3):341–344
Article Google Scholar - Cornejo P, Meier S, Garcia S, Ferrol N, Duran P, Borie F, Seguel A (2017) Contribution of inoculation with arbuscular mycorrhizal fungi to the bioremediation of a copper contaminated soil using Oenothera picensis. J Soil Sci Plant Nutr 17:14–21
CAS Google Scholar - Elhindi KM, El-Din AS, Elgorban AM (2017) The impact of arbuscular mycorrhizal fungi in mitigating salt-induced adverse effects in sweet basil (Ocimum basilicum L.). Saudi J Biol Sci 24(1):170–179. https://doi.org/10.1016/j.sjbs.2016.02.010
Article CAS PubMed Google Scholar - Estrada B, Beltrán-Hermoso M, Palenzuela J, Iwase K, Ruiz-Lozano JM, Barea JM, Oehl F (2013) Diversity of arbuscular mycorrhizal fungi in the rhizosphere of Asteriscus maritimus (L.) Less., a representative plant species in arid and saline Mediterranean ecosystems. J Arid Environ 97:170–175. https://doi.org/10.1016/j.jaridenv.2013.05.019
Article Google Scholar - Evelin H, Kapoor R, Giri B (2009) Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann Bot 104(7):1263–1280. https://doi.org/10.1093/aob/mcp251
Article CAS PubMed PubMed Central Google Scholar - Evelin H, Giri B, Kapoor R (2012) Contribution of Glomus intraradices inoculation to nutrient acquisition and mitigation of ionic imbalance in NaCl-stressed Trigonella foenum-graecum. Mycorrhiza 22(3):203–217. https://doi.org/10.1007/s00572-011-0392-0
Article CAS PubMed Google Scholar - Evelin H, Giri B, Kapoor R (2013) Ultrastructural evidence for AMF mediated salt stress mitigation in Trigonella foenum-graecum. Mycorrhiza 23(1):71–86. https://doi.org/10.1007/s00572-012-0449-8
Article CAS PubMed Google Scholar - Garg N, Bhandari P (2016) Silicon nutrition and mycorrhizal inoculations improve growth, nutrient status , K+/Na+ ratio and yield of Cicer arietinum L. genotypes under salinity stress. Plant Growth Regul 78(3):371–387. https://doi.org/10.1007/s10725-015-0099-x
Article CAS Google Scholar - Garg N, Manchanda G (2008) Effect of arbuscular mycorrhizal inoculation on salt-induced nodule senescence in Cajanus cajan (Pigeonpea). J Plant Growth Regul 27(2):115–124. https://doi.org/10.1007/s00344-007-9038-z
Article CAS Google Scholar - Giovannetti M, Mosse B (1980) An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol 84(3):489–500. https://doi.org/10.1111/j.1469-8137.1980.tb04556.x
Article Google Scholar - Hammer EC, Rillig MC (2011) The influence of different stresses on glomalin levels in an arbuscular mycorrhizal fungus-salinity increases glomalin content. PLoS One 6(12):1–5. https://doi.org/10.1371/journal.pone.0028426
Article CAS Google Scholar - Hammer EC, Nasr H, Pallon J, Olsson PA, Wallander H (2011) Elemental composition of arbuscular mycorrhizal fungi at high salinity. Mycorrhiza 21(2):117–129. https://doi.org/10.1007/s00572-010-0316-4
Article CAS PubMed Google Scholar - Juniper S, Abbott LK (2006) Soil salinity delays germination and limits growth of hyphae from propagules of arbuscular mycorrhizal fungi. Mycorrhiza 16(5):371–379. https://doi.org/10.1007/s00572-006-0046-9
Article CAS PubMed Google Scholar - Krishnamoorthy R, Kim K, Subramanian P, Senthilkumar M, Anandham R, Sa T (2016) Arbuscular mycorrhizal fungi and associated bacteria isolated from salt-affected soil enhances the tolerance of maize to salinity in coastal reclamation soil. Agric Ecosyst Environ 231:233–239. https://doi.org/10.1016/j.agee.2016.05.037
Article CAS Google Scholar - Meier S, Cornejo P, Cartes P, Borie F, Medina J, Azcón R (2015) Interactive effect between cu-adapted arbuscular mycorrhizal fungi and biotreated agrowaste residue to improve the nutritional status of Oenothera picensis growing in Cu-polluted soils. J Plant Nutr Soil Sci 178(1):126–135. https://doi.org/10.1002/jpln.201400092
Article CAS Google Scholar - Ortiz N, Armada E, Duque E, Roldán A, Azcón R (2015) Contribution of arbuscular mycorrhizal fungi and/or bacteria to enhancing plant drought tolerance under natural soil conditions: effectiveness of autochthonous or allochthonous strains. J Plant Physiol 174:87–96. https://doi.org/10.1016/j.jplph.2014.08.019
Article CAS PubMed Google Scholar - Porcel R, Redondo-Gómez S, Mateos-Naranjo E, Aroca R, Garcia R, Ruiz-Lozano JM (2015) Arbuscular mycorrhizal symbiosis ameliorates the optimum quantum yield of photosystem II and reduces non-photochemical quenching in rice plants subjected to salt stress. J Plant Physiol 185:75–83. https://doi.org/10.1016/j.jplph.2015.07.006
Article CAS PubMed Google Scholar - Richards LA (1954) Diagnosis and improvement of diagnosis and improvement of saline and alkali soils. Agricultural Handbook n° 60. US Department of Agriculture Washington D.C., 160 p
- Ruiz-Lozano JM, Porcel R, Azcón C, Aroca R (2012) Regulation by arbuscular mycorrhizae of the integrated physiological response to salinity in plants: new challenges in physiological and molecular studies. J Exp Bot 63(11):4033–4044. https://doi.org/10.1093/jxb/ers126
Article CAS PubMed Google Scholar - Santander C, Aroca R, Ruiz-Lozano JM, Olave J, Cartes P, Borie F, Cornejo P (2017) Arbuscular mycorrhiza effects on plant performance under osmotic stress. Mycorrhiza 27:1–19. https://doi.org/10.1007/s00572-017-0784-x
Article CAS Google Scholar - Sheng M, Tang M, Chen H, Yang B, Zhang F, Huang Y (2008) Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza 18(6–7):287–296. https://doi.org/10.1007/s00572-008-0180-7
Article CAS Google Scholar - Shokri S, Maadi B (2009) Effects of arbuscular mycorrhizal fungus on the mineral nutrition and yield of Trifolium alexandrinum plants under salinity stress. J Agron 8:79–83. https://doi.org/10.3923/ja.2009.79.83
Article CAS Google Scholar - Torbaghan ME, Lakzian A, Astaraei AR, Fotovat A, Besharati H (2017) Salt and alkali stresses reduction in wheat by plant growth promoting haloalkaliphilic bacteria. J Soil Sci Plant Nutr 17:1058–1087
Article CAS Google Scholar - Tsunekawa K, Shijuku T, Hayashimoto M, Kojima Y, Onai K, Morishita M, Uozumi N (2009) Identification and characterization of the Na+/H+ antiporter NhaS3 from the thylakoid membrane of Synechocystis sp. PCC 6803. J Biol Chem 284(24):16513–16521. https://doi.org/10.1074/jbc.M109.001875
- Tuo X-Q, Li S, Wu Q-S, Zou Y-N (2015) Alleviation of waterlogged stress in peach seedlings inoculated with Funneliformis mosseae: changes in chlorophyll and proline metabolism. Sci Hortic 197:130–134. https://doi.org/10.1016/j.scienta.2015.09.022
Article CAS Google Scholar - Yamato M, Ikeda S, Iwase K (2008) Community of arbuscular mycorrhizal fungi in a coastal vegetation on Okinawa island and effect of the isolated fungi on growth of sorghum under salt-treated conditions. Mycorrhiza 18(5):241–249. https://doi.org/10.1007/s00572-008-0177-2
Article PubMed Google Scholar - Yooyongwech S, Samphumphuang T, Tisarum R, Theerawitaya C, Cha-um S (2016) Arbuscular mycorrhizal fungi (AMF) improved water deficit tolerance in two different sweet potato genotypes involves osmotic adjustments via soluble sugar and free proline. Sci Hortic 198:107–117. https://doi.org/10.1016/j.scienta.2015.11.002
Article CAS Google Scholar - Zhao R, Guo W, Bi N, Guo J, Wang L, Zhao J, Zhang J (2015) Arbuscular mycorrhizal fungi affect the growth, nutrient uptake and water status of maize (Zea mays L.) grown in two types of coal mine spoils under drought stress. Appl Soil Ecol 88(August 2016):41–49. https://doi.org/10.1016/j.apsoil.2014.11.016
Article Google Scholar - Zheng Y, Jia A, Ning T, Xu J, Li Z, Jiang G (2008) Potassium nitrate application alleviates sodium chloride stress in winter wheat cultivars differing in salt tolerance. J Plant Physiol 165(14):1455–1465. https://doi.org/10.1016/j.jplph.2008.01.001
Article CAS PubMed Google Scholar - Zhu XC, Song FB, Liu SQ, Liu TD, Zhou X (2012) Arbuscular mycorrhizae improves photosynthesis and water status of Zea mays L. under drought stress. Plant Soil Environ 58(4):196–203
Article Google Scholar
Funding
The authors thank CONICYT, Chile, for the financial support through a scholarship for Doctoral Thesis, Grant No. 21161211 (C. Santander); FONDECYT Regular Grant No. 1170264 (P. Cornejo); PAI-MEC program, Grant No. 80170023 (A. Valentine); and CONICYT/FONDAP/15130015 (P. Cornejo).
Author information
Authors and Affiliations
- Departamento de Ciencias Químicas y Recursos Naturales, Centro de Investigación en Micorrizas y Sustentabilidad Agroambiental (CIMYSA), Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, P.O. Box 54-D, Temuco, Chile
Christian Santander, Fernando Borie & Pablo Cornejo - Centro de Investigación y Desarrollo en Recursos Hídricos (CIDERH), Universidad Arturo Prat, Vivar 493 2nd floor, Iquique, Chile
Christian Santander & Jorge Olave - Facultad de Farmacia, Programa de Doctorado en Ciencia y Tecnología Analítica, Universidad de Concepción, P.O. Box 237, Concepción, Chile
Mario Sanhueza - Facultad de Ciencias de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile
Fernando Borie - Department of Botany and Zoology, Stellenbosch University, Stellenbosch, Western Cape, South Africa
Alexander Valentine
Authors
- Christian Santander
You can also search for this author inPubMed Google Scholar - Mario Sanhueza
You can also search for this author inPubMed Google Scholar - Jorge Olave
You can also search for this author inPubMed Google Scholar - Fernando Borie
You can also search for this author inPubMed Google Scholar - Alexander Valentine
You can also search for this author inPubMed Google Scholar - Pablo Cornejo
You can also search for this author inPubMed Google Scholar
Corresponding author
Correspondence toPablo Cornejo.
Ethics declarations
Conflict of Interest
The authors declare that they have no conflict of interest.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Santander, C., Sanhueza, M., Olave, J. et al. Arbuscular Mycorrhizal Colonization Promotes the Tolerance to Salt Stress in Lettuce Plants through an Efficient Modification of Ionic Balance.J Soil Sci Plant Nutr 19, 321–331 (2019). https://doi.org/10.1007/s42729-019-00032-z
- Received: 27 August 2018
- Accepted: 03 January 2019
- Published: 11 February 2019
- Issue Date: 15 June 2019
- DOI: https://doi.org/10.1007/s42729-019-00032-z