Oxygen Isotope and Palaeomagnetic Stratigraphy of Equatorial Pacific Core V28-238: Oxygen Isotope Temperatures and Ice Volumes on a 105 Year and 106 Year Scale* | Quaternary Research | Cambridge Core (original) (raw)
Abstract
Core Vema 28-238 preserves an excellent oxygen isotope and magnetic stratigraphy and is shown to contain undisturbed sediments deposited continuously through the past 870,000 yr. Detailed correlation with sequences described by Emiliani in the Caribbean and Atlantic Ocean is demonstrated. The boundaries of 22 stages representing alternating times of high and low Northern Hemisphere ice volume are recognized and dated. The record is interpreted in terms of Northern Hemisphere ice accumulation, and is used to estimate the range of temperature variation in the Caribbean.
References
Arrhenius, G., (1952). Sediment cores from the East Pacific. Reports of the Swedish Deep-Sea Expedition 5, .Google Scholar
Broecker, W.S., Thurber, D.L., Goddard, J., Ku, T-L., Matthews, R.K., Mesolella, K.J., (1968). Milankovitch hypothesis supported by precise dating of coral reefs and deep-sea sediments. Science 159, 297–300.CrossRefGoogle ScholarPubMed
Broecker, W.S., Donk, J.van, (1970). Insolation Changes, Ice Volumes, and the O18 Record in Deep-Sea Cores. Reviews of Geophysics and Space Physics 8, 169–198.CrossRefGoogle Scholar
Curray, J.R., (1961). Late Quaternary sea level: a discussion. Geological Society of America Bulletin 72, 1707–1712.CrossRefGoogle Scholar
Dalrymple, G.B., Bishop, W.W., Miller, J.A., (1972). Potassium argon dating of geomagnetic reversals and North American glaciations in calibration of hominoid evolution. Scottish Academic Press.Google Scholar
Dansgaard, W., Tauber, H., (1969). Glacier Oxygen-I8 content and Pleistocene ocean temperatures. Science 166, 499–502.CrossRefGoogle ScholarPubMed
Donk, J.van, Mathieu, G., (1969). Oxygen isotope compositions of foraminifera and water samples from the Arctic Ocean. Journal of Geophysical Research 74, 3396–3407.CrossRefGoogle Scholar
Duplessy, J.C., Lalou, C., Vinot, A.C., (1970). Differential isotopic fractionation in benthic foraminifera and palaeotemperatures reassessed. Science 168, 250–251.CrossRefGoogle Scholar
Emiliani, C., (1954). Depth habitats of some species of pelagic foraminifera as indicated by oxygen isotope ratios. American Journal of Science 252, 149–158.CrossRefGoogle Scholar
Emiliani, C., (1961). Cenozoic climatic changes as indicated by the stratigraphy and chronology of deep-sea cores of Globigerina facies. Annals of the New York Academy of Science 95, 521–536.CrossRefGoogle Scholar
Emiliani, C., (1966a). Palaeotemperature analysis of Caribbean cores P 6304-8 and P 6304-9 and a generalised temperature curve for the last 425,000 years. Journal of Geology 74, 109–126.CrossRefGoogle Scholar
Epstein, S., Buchsbaum, R., Lowenstam, H.A., Urey, H.C., (1951). Carbonate-water isotopic temperature scale. Geological Society of America Bulletin 62, 417–426.CrossRefGoogle Scholar
Epstein, S., Buchsbaum, R., Lowenstam, H.A., Urey, H.C., (1953). Revised carbonate-water isotopic temperature scale. Geological Society of America Bulletin 64, 1315–1326.CrossRefGoogle Scholar
Ericson, D.B., Wollin, G., (1968). Pleistocene climates and chronology in deep-sea sediments. Science 162, 1227–1234.CrossRefGoogle ScholarPubMed
Ericson, D.B., Wollin, G., (1970). Pleistocene climates in the Atlantic and Pacific Oceans: a comparison based on deep-sea sediments. Science 167, 1483–1485.CrossRefGoogle ScholarPubMed
Evans, P., (1971). Towards a Pleistocene timescale. The Phanerozoic Time-scale—a supplement. Geological Society (London) Special Publication 5, 123–356Part 2.CrossRefGoogle Scholar
Evernden, J.F., Curtis, G.H., (1965). The potassium-argon dating of late Cenozoic rocks in East Africa and Italy. Current Anthropology 6, 343–364.CrossRefGoogle Scholar
Foster, J.H., (1966). A paleomagnetic spinner magnetometer using a fluxgate gradiometer. Earth and Planetary Science Letters 1, 463–466.CrossRefGoogle Scholar
Foster, J.H., Opdyke, N.D., (1970). Upper Miocene to recent magnetic stratigraphy in deep-sea sediments. Journal of Geophysical Research 75, 4465–4473.CrossRefGoogle Scholar
Frechen, J., Lippolt, H.J., (1965). Kalium-Argon-Daten zum Alter des Laacher Vulkanismus, der Rheinterrassen und der Eiszeiten. Eiszeitalter und Gegenwert 16, 5–30.Google Scholar
Gartner, S., (1972). Late Pleistocene calcareous nannofossils in the Caribbean and their interoceanic correlation. Paleogeography, Palaeoclimatology, Palaeoecology 12, 169–191.CrossRefGoogle Scholar
Hammen, T.van der, Wijmstra, T.A., Zagwijn, W.H., (1971). The floral record of the late Cenozoic of Europe. Turekian, K.K., The Late Cenozoic Glacial Ages Yale University Press 391–425.Google Scholar
Hays, J.D., Saito, T., Opdyke, N.D., Burckle, L.H., (1969). Pliocene-Pleistocene Sediments of the Equatorial Pacific: their Palaeomagnetic, Biostratigraphic, and Climatic Record. Geological Society of America Bulletin 80, 1481–1514.CrossRefGoogle Scholar
Imbrie, J., Kipp, N.G., (1971). A new micropalaeontological method for quantative palaeoclimatology: application to a late Pleistocene Caribbean core. Turekian, K.K., The Late Cenozoic Glacial Ages Yale University Press 71–183.Google Scholar
Johnsen, S.J., Dansgaard, W., Clausen, H.B., Langway, C.C., (1972). Oxygen Isotope profiles through the Antarctic and Greenland Ice Sheets. Nature (London) 235, 429–434.CrossRefGoogle Scholar
Kobayashi, K., Kitazawa, Kanaya T., Sakai, T., (1971). Magnetic and micropaleontological study of deep-sea sediments from the west-central equatorial Pacific. Deep Sea Research 18, 1045–1062.Google Scholar
Lidz, B., Kehm, A., Miller, H., (1968). Depth habitats of pelagic foraminifera during the Pleistocene. Nature (London) 217, 245–247.CrossRefGoogle Scholar
McElhinny, M.W., (1966). An improved method for demagnetizing rocks in alternating magnetic fields. Geophysical Journal Royal Astronomical Society 10, 369–374.CrossRefGoogle Scholar
McIntyre, A., Ruddiman, W.F., Jantzen, R., (1972). Southward penetrations of the North Atlantic polar front: faunal and floral evidence of large-scale surface water mass movements over the last 225,000 years. Deep-Sea Research 19, 61–77.Google Scholar
Mercer, J.H., (1968). Antarctic ice and Sangamon sea level. International Association of Scientific Hydrology Publication 79, .Google Scholar
Olausson, E., (1965). Evidence of climatic changes in North Atlantic Deep-sea cores, with remarks on isotopic palaeotemperature analysis. Progress in Oceanography 3, 221–252.CrossRefGoogle Scholar
The Phanerozoic Time-scale—a Supplement Geological Society (London)Special Publication No. 5.Google Scholar
Richmond, G.M., (1970). Comparison of the Quaternary stratigraphy of the Alps and Rocky Mountains. Quaternary Research 1, 3–29.CrossRefGoogle Scholar
Serebryanny, L., Raukas, A., Punning, J., (1970). Fragments of the natural history of the Russian plain during the late Pleistocene with special reference to radiocarbon datings of fossil organic matter from the Baltic region. Baltica 4, 351–366.Google Scholar
Shackleton, N.J., (1967). Oxygen isotope analyses and Pleistocene temperatures re-assessed. Nature (London) 215, 15–17.CrossRefGoogle Scholar
Shackleton, N.J., (1968). Depth of pelagic foraminifera and isotopic changes in Pleistocene oceans. Nature (London) 218, 79–80.CrossRefGoogle Scholar
Shackleton, N.J., (1969). The last interglacial in the marine and terrestrial records. Proceedings of the Royal Society London B 174, 135–154.Google Scholar
Shackleton, N.J., (1971). New Guinea Reef Complex 111. The Phanerozoic Time-scale—a supplement. Geological Society (London) Special Publication 5, 106–107Item 390.Google Scholar
Steiner, R.P., Harrison, R.S., Matthews, R.K., (1973). Eustatic low stand of sea level between 105,000 and 125,000 B. P.: evidence from the subsurface of Barbados. Geological Society of America Bulletin 84, in press.Google Scholar
Turner, C., (1970). The middle Pleistocene deposits at Marks Tey, Essex. Philosophical Transactions of the Royal Society of London B 257, 373–440.Google Scholar
Urey, H.C., (1947). The thermodynamic properties of isotopic substances. Journal of the Chemical Society 562–581.CrossRefGoogle ScholarPubMed
Veeh, H.H., Chappell, J., (1970). Astronomical theory of climatic change: support from New Guinea. Science 167, 862–865.CrossRefGoogle ScholarPubMed