Is there chaos in the brain? II. Experimental evidence and related models (original) (raw)

[1] P. Faure; H. Korn Is there chaos in the brain? I. Concepts of nonlinear dynamics and methods of investigation, C. R. Acad. Sci. Paris, Ser. III, Volume 324 (2001), pp. 773-793

[2] E. Ott Chaos in Dynamical Systems, Cambridge University Press, Cambridge, UK, 2002

[3] S. Strogatz Nonlinear Dynamics and Chaos: With Applications in Physics, Biology, Chemistry, and Engineering, 1st ed., Studies in Nonlinearity, Perseus Publishing, 1994

[4] H. Kantz; T. Schreiber Nonlinear Time Series Analysis, Cambridge Nonlinear Science Series, 7, Cambridge University Press, Cambrigde, UK, 1997

[5] H. Abarbanel Analysis of Observed Chaotic Data, Springer Verlag, 1996

[6] P. Grobstein Variability in brain function and behavior (V.S. Ramachandran, ed.), The Encyclopedia of Human Behavior, Academic Press, 1994, pp. 447-458

[7] L. Glass; M.C. Mackey From Clocks to Chaos, Princeton University Press, 1988

[8] P. Grobstein Directed movement in the frog: motor choice, spatial representation, free will? (J. Kien; C.R. McCrohan; W. Winlow, eds.), Neurobiology of Motor Program Selection, Pergamon Press, New York, 1992, pp. 250-279

[9] L. Glass Chaos in biological systems (M.A. Arbib, ed.), Handbook of Brain Theory and Neural Networks, MIT Press, 2003, pp. 205-208

[10] W.J. Freeman Neurodynamics: An Exploration in Mesoscopic Brain Dynamics, Perspectives in Neural Coding, Springer, 2000

[11] S.L. Bressler; W.J. Freeman Frequency analysis of olfactory system EEG in cat, rabbit and rat, EEG Clin. Neurophysiol., Volume 50 (1980), pp. 9-24

[12] L.J. DeFelice; J.R. Clay Electrophysiological recordings from Xenopus oocytes (B. Sakmann; E. Neher, eds.), Single-Channel Recording, Kluwer Academic, New York, 1983 (Ch. 15, pp. 323–342)

[13] D. Colquhoun; A.G. Hawkes A Q-matrix cookbook: How to write only one program to calculate the single-channel and macroscopic predictions for any kinetic mechanism (B. Sakmann; E. Neher, eds.), Single Channel Recording, Kluwer Academic, New York, 1995, pp. 397-482

[14] L.J. DeFelice; A. Isaac Chaotic states in a random world: relationships between the nonlinear differential equations of excitability and the stochastic properties of ion channels, J. Stat. Phys., Volume 70 (1993), pp. 339-354

[15] J.B. Bassingthwaighte; L.S. Liebovitvh; B.J. West Fractal Physiology, Oxford University Press, New York, 1994

[16] W.R. Foster; L.H. Ungar; J.S. Schwaber Significance of conductances in Hodgkin–Huxley models, J. Neurophysiol., Volume 70 (1993), pp. 2502-2518

[17] J. Rinzel Bursting oscillations in a excitable membrane model (B.D. Sleeman; R.J. Jarvis, eds.), Ordinary and Partial Differential equations: Proc. 8th Dundee Conference, Lecture Notes in Math., 1151, 1985, pp. 304-316

[18] J. Rinzel; G.B. Ermentrout Analysis of neural excitability and oscillations (C. Koch; I. Segev, eds.), Methods in Neuronal Modeling: From Synapses to Networks, MIT Press, Cambridge, MA, USA, 1989, pp. 135-169

[19] R. FitzHugh Impulses and physiological states in theoretical models of nerve membrane, Biophys. J., Volume 1 (1961), pp. 445-466

[20] J.S. Nagumo; S. Arimoto; S. Yoshizawa An active pulse transmission line simulating nerve axon, Proc. IRE (1962), pp. 2061-2070

[21] A.L. Hodgkin; A.F. Huxley A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol., Volume 117 (1952), pp. 500-544

[22] A.L. Hodgkin The Conduction of Nerve Impulses, Liverpool University Press, UK, 1967

[23] C. Koch; O. Bernander Axonal modeling (M.A. Arbib, ed.), Handbook of Brain Theory and Neural Networks, MIT Press, 1998, pp. 129-134

[24] J.J.B. Jack; D. Noble; R.W. Tsien Electric Current Flow in Excitable Cells, Clarendon Press, Oxford, 1983

[25] Methods in Neuronal Modeling (C. Koch; O. Bernander, eds.), MIT Press, Cambridge, MA, USA, 1989

[26] J. Keener; J. Sneyd Mathematical Physiology, Springer, New York, 1998

[27] R.R. Llinas The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function, Science, Volume 242 (1988), pp. 1654-1664

[28] L. Glass Chaos in neural systems (M.A. Arbib, ed.), Handbook of Brain Theory and Neural Networks, MIT Press, 1998, pp. 186-189

[29] C. Koch Biophysics of Computation. Information Processing in Single Neurons, Oxford University Press, Oxford, UK, 1999

[30] B. Van der Pol On relaxation oscillations, Phil. Mag., Volume 2 (1926), pp. 922-978

[31] B. Van der Pol; J. Van der Mark The heartbeat considered as a relaxation oscillation and an electrical model of the heart, Phil. Mag. (Suppl.), Volume 6 (1928), pp. 763-775

[32] C. Morris; H. Lecar Voltage oscillations in the Barnacle giant muscle fiber, Biophys. J., Volume 193 (1981), pp. 193-213

[33] X.J. Wang; J. Rinzel Oscillatory and bursting properties of neurons (M. Arbib, ed.), Handbook of Brain Theory and Neural Networks, MIT Press, 1998, pp. 686-691

[34] R.C. Hilborn Chaos and Nonlinear dynamics: An Introduction for Scientists and Engineers, Oxford University Press, Oxford, New York, 1994

[35] P. Bergé; Y. Pomeau; C. Vidal L'ordre dans le chaos, Hermann, Paris, 1984

[36] J.L. Hindmarsh; R.M. Rose A model of the nerve impulse using two first-order differential equations, Nature, Volume 286 (1982), pp. 162-164

[37] J.L. Hindmarsh; R.M. Rose A model of neuronal bursting using three coupled first order differential equations, Proc. R. Soc. Lond. B Biol. Sci., Volume 221 (1984), pp. 87-102

[38] R.M. Rose; J.L. Hindmarsh A model of a thalamic neuron, Proc. R. Soc. Lond. B Biol. Sci., Volume 225 (1985), pp. 161-193

[39] P. Faure; D. Kaplan; H. Korn Probabilistic release and the transmission of complex firing patterns between neurons, J. Neurophysiol., Volume 84 (2000), pp. 3010-3025

[40] H.D.I. Abarbanel; R. Huerta; M.I. Rabinovich; N.F. Rulkov; P.F. Rowat; A.I. Selverston Synchronized action of synaptically coupled chaotic model neurons, Neural Comput., Volume 8 (1996), pp. 1567-1602

[41] M. Bazhenov; R. Huerta; M.I. Rabinovich; T. Sejnowski Cooperative behavior of a chain of synaptically coupled chaotic neurons, Physica D, Volume 116 (1998), pp. 392-400

[42] K. Aihara; G. Matsumoto Temporally coherent organization and instabilities in squid giant axons, J. Theor. Biol., Volume 95 (1982), pp. 697-720

[43] K. Aihara; G. Matsumoto Chaotic oscillations and bifurcations in squid giant axons (A.V. Holden, ed.), Chaos, University Press, Princeton, NJ, 1986, pp. 257-269

[44] K. Aihara; G. Matsumoto; Y. Ikegaya Periodic and non-periodic responses of a periodically forced Hodgkin–Huxley oscillator, J. Theor. Biol., Volume 109 (1984), pp. 249-269

[45] H. Hayashi; S. Ishizuka Chaotic nature of bursting discharges in the Onchidium Pacemaker neuron, J. Theor. Biol., Volume 156 (1992), pp. 269-291

[46] X. Jianxue; G. Yunfan; R. Wei; H. Sanjue; W. Fuzhou Propagation of periodic and chaotic action potential trains along nerve fibers, Physica D, Volume 100 (1997), pp. 212-224

[47] A. Wolf; J.B. Swift; H.L. Swinney; J.A. Vastano Determining Lyapunov exponents from a time series, Physica D, Volume 16 (1985), pp. 285-317

[48] D.H. Perkel; T.H. Bullock Neural coding, Neurosci. Res. Progr. Bull., Volume 6 (1968) no. 3, pp. 221-347

[49] D. Perkel Spike trains as carriers of information (F. Schmitt, ed.), The Neurosciences Second Study Program, The Rockefeller University Press, 1970, pp. 587-596

[50] L. Andrey Analytical proof of chaos in single neurons and consequences (K. Lehnertz; J. Arnhold; P. Grassberger; C. Elger, eds.), Chaos in Brain?, World Scientific, 1999, pp. 247-250

[51] G.J. Mpitsos; R.M. Burton; H.C. Creech; O.S. Seppo Evidence for chaos in spike trains of neurons that generate rythmic motor patterns, Brain Res. Bull., Volume 21 (1988), pp. 529-538

[52] W.T. Frazier; E.R. Kandell; I. Kupferman; R. Waziri; R. Coggeshall Morphological and functional properties of identified neurons in the abdominal ganglion of Aplysia Californica, J. Neurophysiol., Volume 30 (1967), pp. 1288-1351

[53] R.E. Plant; M. Kim Mathematical description of a bursting pacemaker neuron by a modification of the Hodgkin–Huxley equations, Biophys. J., Volume 16 (1976), pp. 227-244

[54] C.C. Canavier; J.W. Clark; J.H. Byrne Routes to chaos in a model of a bursting neuron, Biophys. J., Volume 57 (1990), pp. 1245-1251

[55] C.C. Canavier; J.W. Clark; J.H. Byrne Simulation of the bursting activity of neuron R15 in Aplysia: role of ionic currents, calcium balance, and modulatory transmitters, J. Neurophysiol., Volume 66 (1991), pp. 2107-2124

[56] C.C. Canavier; D.A. Baxter; J.W. Clark; J.H. Byrne Nonlinear dynamics in a model neuron provide a novel mechanism for transient synaptic inputs to produce long-term alterations of postsynaptic activity, J. Neurophysiol., Volume 69 (1993), pp. 2252-2257

[57] A. Hermann; A.L.F. Gorman Effects on tetraethylammonium on potassium currents in a molluscan neuron, J. Genet. Physiol., Volume 78 (1981), pp. 87-110

[58] A.V. Holden; W. Winlow; P.G. Haydon The induction of periodic and chaotic activity in a molluscan neurone, Biol. Cyber., Volume 43 (1982), pp. 169-173

[59] A.V. Holden; W. Winlow Bifurcation of periodic activity from periodic activity in a molluscan neurone, Biol. Cyber., Volume 42 (1981), pp. 189-194

[60] H.A. Lechner; D.A. Baxter; J.W. Clark; J.H. Byrne Bistability and its regulation by serotonin in the endogenously bursting neuron R15 in Aplysia, J. Neurophysiol., Volume 75 (1996), pp. 957-962

[61] R.M. Harris-Warrick; R.E. Flamm Multiple mechanisms of bursting in a conditional bursting neuron, J. Neurophysiol., Volume 7 (1987), pp. 2113-2128

[62] R.M. Harris-Warrick; E. Marder Modulation of neural networks for behavior, Annu. Rev. Neurosci., Volume 14 (1991), pp. 39-57

[63] J. Guckenheimer; S. Gueron; R.M. Harris-Warrick Mapping the dynamics of a bursting neuron, Phil. Trans. R. Soc. Lond. B, Volume 341 (1993), pp. 345-359

[64] J. Rinzel; Y.S. Lee Dissection of a model for neuronal parabolic bursting, J. Math. Biol., Volume 25 (1987), pp. 653-675

[65] R. Thom Structural Stability and Morphogenesis, W.A. Benjamin, 1975

[66] K.A. Richardson; T.T. Imhoff; P. Grigg; J.J. Collins Encoding chaos in neural spike trains, Phys. Rev. Lett., Volume 80 (1998), pp. 2485-2488

[67] X. Pei; F. Moss Characterization of low-dimensional dynamics in the Crayfish caudal photoreceptor, Nature, Volume 379 (1996), pp. 618-621

[68] D.J. Christini; J.J. Collins Using noise and chaos control to control nonchaotic systems, Phys. Rev. E, Volume 52 (1995), pp. 5806-5809

[69] A.I. Selverston; J.P. Miller; M. Wadepuhl Cooperative mechanisms for the production of rythmic movements (A. Roberts; B. Roberts, eds.), Neural Origin of Rythmic Movements, Cambridge University Press, London, 1983, pp. 55-88

[70] P.A. Getting Emerging principles governing the operation of neural networks, Annu. Rev. Neurosci., Volume 12 (1989), pp. 185-204

[71] W.O. Friesen; G.S. Stent Neural circuits for generating rythmic movements, Annu. Rev. Biophys. Bioeng., Volume 7 (1978), pp. 37-61

[72] H. Korn; D.S. Faber Electrical interactions between vertebrate neurons: field effects and electrotonic coupling (F. Schmitt; F.G. Worden, eds.), The Neurosciences, 4th Study Program, 1, MIT Press, 1979, pp. 333-358

[73] P.A. Getting; M.S. Dekin Mechanisms of pattern generation underlying swimming in Tritonia. IV. Gating of central pattern generator, J. Neurophysiol., Volume 53 (1985), pp. 466-480

[74] J.P. Miller; A.I. Selverston Mechanisms underlying pattern generation in lobster stomatogastric ganglion as determined by selective inactivation of identified neurons. IV. Network properties of pyloric system, J. Neurophysiol., Volume 48 (1985), pp. 1416-1432

[75] P.A. Getting Comparative analysis of invertebrate central pattern generator (A. Cohen; S. Rogsignol; S. Grillner, eds.), Neural Control of Rythmic Movements, John Wiley, New York, 1985, pp. 101-128

[76] G.N. Borisyuk; R.M. Borisyuk; A.I. Khibnik; D. Roose Dynamics and bifurcations of two coupled neural oscillators with different connection types, Bull. Math. Biol., Volume 57 (1995), pp. 809-840

[77] V. Makarenko; R.R. Llinas Experimentally determined chaotic phase synchronization in a neuronal system, Proc. Natl Acad. Sci. USA, Volume 95 (1998), pp. 15747-15752

[78] R. Llinas; Y. Yarom Oscillatory properties of guinea-pig inferior olivary neurones and their pharmacological modulation: an in vitro study, J. Physiol., Volume 376 (1986), pp. 163-182

[79] R.C. Elson; A.I. Selverston; R. Huerta; N. Rulkov; M.I. Rabinovich; H.D.I. Abarbanel Synchronous behavior of two coupled biological neurons, Phys. Rev. Lett., Volume 81 (1998), pp. 5692-5695

[80] A.A. Sharp; L.F. Abbott; E. Marder Artificial electrical synapses in oscillatory networks, J. Neurophysiol., Volume 67 (1993), pp. 1691-1694

[81] T. Bal; F. Naguy; M. Moulins The pyloric central pattern generator in crustacea: a set of conditionnal neuronal oscillators, J. Comput. Physiol., Volume 163 (1988), pp. 715-727

[82] V.S. Afraimovich; N.N. Verichev; M.I. Rabinovich General synchronization, Radiophysic. Quantum Electr., Volume 29 (1986), p. 747

[83] N.F. Rulkov; A.R. Volkovskii; A. Rodriguez-Lozano; E. del Rio; M.G. Velarde Mutual synchronization of chaotic self-oscillators with dissipative coupling, Int. J. Bifurc. Chaos, Volume 2 (1992), pp. 669-676

[84] M. Falcke; R. Huerta; M.I. Rabinovich; H.D.I. Abarbanel; R.C. Elson; A.I. Selverston Modeling observed chaotic oscillations in bursting neurons: The role of calcium dynamics and IP3, Biological Cybernetics, Volume 82 (2000), pp. 517-527

[85] V.P. Zhigulin; M.I. Rabinovich; R. Huerta; H. Abarbanel Robustness and enhancement of neural synchronization by activity-dependent coupling, Phys. Rev. Lett. E, Volume 67 (2003), p. 021901

[86] G. Bi; M. Poo Synaptic modification by correlated activity: Hebb's postulate revisited, Annu. Rev. Neurosci., Volume 24 (2001), pp. 139-166

[87] A. Szucs; P. Varona; A.R. Volkovskii; H.D. Abarbanel; M.I. Rabinovich; A.I. Selverston Interacting biological and electronic neurons generate realistic oscillatory rhythms, NeuroReport, Volume 11 (2000), pp. 563-569

[88] M.I. Rabinovich; H.D.I. Abarbanel; R. Huerta; R. Elson; A.I. Selverston Self-regularization of chaos in neural systems: Experimental and theoretical results, IEEE Trans. Circuits and Systems: Fundamental Theory and Applications, Volume 44 (1997), pp. 997-1005

[89] M.I. Rabinovich; H.D.I. Abarbanel The role of chaos in neural systems, Neuroscience, Volume 87 (1998), pp. 5-14

[90] R.C. Elson; R. Huerta; H.D.I. Abarbanel; M.I. Rabinovich; A.I. Selverston Dynamic control of irregular bursting in an identified neuron of an oscillatory circuit, J. Neurophysiol., Volume 82 (1999), pp. 115-122

[91] M.I. Rabinovich; P. Varona; H.D. Abarbanel Nonlinear cooperative dynamics of living neurons, Int. J. Bifurc. Chaos, Volume 10 (2000), pp. 913-933

[92] J.F. Heagy; T.L. Carroll; L.M. Pecora Synchronous chaos in coupled oscillator systems, Phys. Rev. E, Volume 50 (1994), pp. 1874-1884

[93] M.I. Rabinovich; R. Huerta; M. Bazhenov; A.K. Koslov; H.D.I. Abarbanel Computer simulations of stimulus-dependent state switching in basic circuits of bursting neurons, Phys. Rev. E, Volume 58 (1998), pp. 6418-6430

[94] M. Steriade; D.A. McCormick; T.J. Sejnowski Thalamocortical oscillations in the sleeping and aroused brain, Science, Volume 262 (1993), pp. 679-685

[95] C. van Vreeswijk; H. Sompolinsky Chaos in neuronal networks with balanced excitatory and inhibitory activity, Science, Volume 274 (1996), pp. 1724-1726

[96] R. Huerta; P. Varona; M.I. Rabinovich; H.D. Abarbanel Topology selection by chaotic neurons of a pyloric central pattern generator, Biol. Cyber., Volume 84 (2001), p. L1-L8

[97] J. Guckenheimer; P. Rowat Dynamical analysis of real neuronal networks (P.S.G. Stein; S. Grillner; A.I. Selverston; D.G. Stuart, eds.), Neurons, Networks, and Motor Behavior, MIT Press, London, 1997, pp. 151-163

[98] L. Brock; J. Coombs; J. Eccles The recording of potentials from motoneurones with an intracellular electrode, J. Physiol. Lond., Volume 117 (1952), pp. 431-460

[99] Y. Burnod; H. Korn Consequences of stochastic release of neurotransmitters for network computation in the central nervous system, Proc. Natl Acad. Sci. USA, Volume 86 (1989), pp. 352-356

[100] H. Korn; D.S. Faber Transmission at a central inhibitory synapse. IV. Quantal structure of synaptic noise, J. Neurophysiol., Volume 63 (1990), pp. 198-222

[101] D. Ferster Is neural noise just a nuisance?, Science, Volume 273 (1996), p. 1812

[102] W. Calvin; C. Stevens Synaptic noise as a source of variability in the interval between action potentials, Science, Volume 155 (1967), pp. 842-844

[103] W.R. Softky; C. Koch The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs, J. Neurosci., Volume 13 (1993), pp. 334-350

[104] M.N. Shadlen; W.T. Newsome The variable discharge of cortical neurons: implications for connectivity, computation, and information coding, J. Neurosci., Volume 18 (1998), pp. 3870-3896

[105] Z.F. Mainen; T.J. Sejnowski Reliability of spike timing in neocortical neurons, Science, Volume 268 (1995), pp. 1503-1506

[106] C.F. Stevens; A.M. Zador Input synchrony and the irregular firing of cortical neurons, Nat. Neurosci., Volume 1 (1998), pp. 210-217

[107] M.N. Shadlen; W.T. Newsome Noise, neural codes and cortical organization, Curr. Opin. Neurobiol., Volume 4 (1994), pp. 569-579

[108] W.R. Softky Simple codes versus efficient codes, Curr. Opin. Neurobiol., Volume 5 (1995), pp. 239-247

[109] M.N. Shadlen; W.T. Newsome Is there a signal in the noise?, Curr. Opin. Neurobiol., Volume 5 (1995), pp. 248-250

[110] P. Faure; H. Korn A nonrandom dynamic component in the synaptic noise of a central neuron, Proc. Natl Acad. Sci. USA, Volume 94 (1997), pp. 6506-6511

[111] P. Faure; H. Korn A new method to estimate the Kolmogorov entropy on recurrence plots: its application to neuronal signals, Physica D, Volume 122 (1998), pp. 265-279

[112] H. Korn; D.S. Faber; A. Triller Probabilistic determination of synaptic strength, J. Neurophysiol., Volume 55 (1986), pp. 402-421

[113] G. Buzsaki; R. Llinas; W. Singer; A. Berthoz Temporal Coding in the Brain, Research and Perspectives in Neurosciences – Fondation IPSEN, Springer-Verlag, 1994

[114] H. Fujii; H. Ito; K. Aihara; N. Ichinose; M. Tsukada Dynamical cell assembly hypothesis – Theoretical possibility of spatio temporal coding in the cortex, Neural Networks, Volume 9 (1996), pp. 1303-1350

[115] J.J. Eggermont Is there a neural code?, Neurosci. Biobehav. Rev., Volume 22 (1998), pp. 355-370

[116] G. Werner, Computation in nervous systems, 2000, http://www.ece.utexas.edu/werner/neuralcomputation.html

[117] D. Hebb The Organisation of Behavior – A Neurophysiological Theory, John Wiley, New York, 1949

[118] C. Von der Malsburg The correlation theory of brain function, internal report 81-2, Max Planck Institute for Biophysical Chemistry, 1981

[119] J.J. Hopfield Pattern recognition computation using action potential timing for stimulus representation, Nature, Volume 376 (1995), pp. 33-36

[120] J.P. Segundo; D.H. Perkel The nerve cell as an analyser of spike trains (M.A.B. Brazier, ed.), UCLA Forum in Medical Sciences No. 11, The Interneurons, University of California Press, Berkeley, USA, 1969, pp. 349-390

[121] J.P. Segundo; G. Sugihara; P. Dixon; M. Stiber; L.F. Bersier The spike trains of inhibited pacemaker neurons seen through the magnifying glass of nonlinear analysis, Neuroscience, Volume 87 (1998), pp. 741-766

[122] A.P. Georgopoulos; A.B. Schwartz; R.E. Kettner Neuronal population coding of movement direction, Science, Volume 233 (1986), pp. 1416-1419

[123] W. Singer Synchronization of cortical activity and its putative role in information processing and learning, Annu. Rev. Physiol., Volume 55 (1993), pp. 349-374

[124] M.A. Nicolelis; L.A. Baccala; R.C. Lin; J.K. Chapin Sensorimotor encoding by synchronous neural ensemble activity at multiple levels of the somatosensory system, Science, Volume 268 (1995), pp. 1353-1358

[125] A. Riehle; S. Grun; M. Diesmann; A. Aertsen Spike synchronization and rate modulation differentially involved in motor cortical function, Science, Volume 278 (1997), pp. 1950-1953

[126] S.J. Schiff; K. Jerger; D.H. Duong; T. Chang; M.L. Spano; W.L. Ditto Controlling chaos in the brain, Nature, Volume 8 (1994), pp. 615-620

[127] C. Skarda; W.J. Freeman How brain make chaos in order to make sense of the world, Behav. Brain Sci., Volume 10 (1987), pp. 161-195

[128] C. Skarda; W. Freeman Chaos and the new science of the brain, Concepts in Neurosci., Volume 1 (1990), pp. 275-285

[129] P. So; J.T. Francis; T.I. Netoff; B.J. Gluckman; S.J. Schiff Periodic orbits: a new language for neuronal dynamics, Biophys. J., Volume 74 (1998), pp. 2776-2785

[130] K. Pakdaman; S. Tanabe; T. Shimokawa Coherence resonance and discharges time reliability in neurons and neuronal models, Neural Networks, Volume 14 (2001), pp. 895-905

[131] K. Wiesenfeld; F. Moss Stochastic resonance and the benefits of noise: from ice ages to Crayfish and Squids, Nature, Volume 373 (1995), pp. 33-36

[132] A. Bulsara; L. Gammaitoni Tuning into noise, Phys. Today, Volume 49 (1996), pp. 39-45

[133] A. Longtin; A. Bulsara; F. Moss Time-interval sequences in bistable systems and the noise-induced transmission of information by sensory neurons, Phys. Rev. Lett., Volume 67 (1991), pp. 656-659

[134] R.D. Chialvo; A. Longtin; J. Muller-Gerking Stochastic resonance in models of neuronal ensembles, Phys. Rev. E, Volume 55 (1997), pp. 1798-1808

[135] F. Chapeau-Blondeau Comparison between spike and rate models in networks of integrate-and-fire neurons (R.R. Poznanski, ed.), Biophysical Neural Networks, Mary Ann Liebert, 2000, pp. 303-341

[136] J.K. Douglass; L. Wilkens; E. Pantazelou; F. Moss Noise enhancement of information transfer in crayfish mechanoreceptors by stochastic resonance, Nature, Volume 365 (1993), pp. 337-340

[137] J. Collins; T. Imhoff; P. Grigg Noise-enhanced information transmission in rat SA1 cutaneous mechanoreceptors via aperiodic stochastic resonance, J. Neurophysiol., Volume 76 (1996), pp. 642-645

[138] J.E. Levin; J.P. Miller Broadband neural encoding in the cricket cercal sensory system enhanced by stochastic resonance, Nature, Volume 380 (1996), pp. 165-168

[139] F. Jaramillo; K. Wiesenfeld Mechanoelectrical transduction assisted by Brownian motion: a role for noise in the auditory system, Nat. Neurosci., Volume 1 (1998), pp. 384-388

[140] B.J. Gluckman; P. So Stochastic resonance in mammalian neuronal network, Chaos, Volume 8 (1998), pp. 588-598

[141] P. Cordo; J.T. Inglis; S. Verschueren; J.J. Collins; S. Merfeld; S. Rosenblum; S. Buckley; F. Moss Noise in human spindles, Nature, Volume 383 (1996), pp. 769-770

[142] J.J. Collins; T.T. Imhoff; P. Grigg Noise-enhanced tactile sensation, Nature, Volume 383 (1996), p. 770

[143] E. Simonotto; M. Riani; C. Seife; M. Roberts; J. Twitty; F. Moss Visual perception of stochastic resonance, Phys. Rev. Lett., Volume 78 (1997), pp. 1186-1189

[144] S.M. Bezrukov; I. Vodyanoy Noise-induced enhancement of signal transduction across voltage-dependent ion channels, Nature, Volume 378 (1995), pp. 362-364

[145] L. Glass; L. Glass Synchronization and rhythmic processes in physiology, Nature, Volume 410 (2001), pp. 277-284

[146] J.P. Segundo; J.-F. Vibert; K. Pakdaman; M. Stiber; O. Diez Martinez Noise and the neurosciences: a long history, a recent revival and some theory (K. Pribram, ed.), Brain and Self-Organization, Lawrence Erlbaum Associates, 1994, pp. 299-331

[147] P. Faure; H. Korn Synaptic noise and chaos in a vertebrate neuron (M.A. Arbib, ed.), Handbook of Brain Theory and Neural Networks, MIT Press, 2002, pp. 1130-1133

[148] D. Nozaki; Y. Yamamoto Enhancement of stochastic resonance in a FitzHugh/Nagumo neuronal model driven by colored noise, Phys. Lett. A, Volume 243 (1998), pp. 281-287

[149] K. Pakdaman; D. Mestivier External noise synchronizes forced oscillators, Phys. Rev. E, Volume 64 (2001), p. 030901(R)

[150] M.T. Huber; J.C. Krieg; M. Dewald; H.A. Braun Stochastic encoding in sensory neurons: impulse patterns of mammalian cold receptors, Chaos, Solitons and Fractals, Volume 11 (2000), pp. 1895-1903

[151] A. Crisanti; M. Falcioni; G. Paladin; A. Vulpiani Stochastic resonance in deterministic chaotic systems, J. Phys. A: Math. Gen., Volume 27 (1994), p. L597

[152] R. Kozma; W.J. Freeman A possible mechanism for intermittent oscillations in the KIII model of dynamics memories – the case study of olfaction, IEEE/INNS Int. Joint Conf. Neural Networks, 1999, pp. 52-57

[153] R. Kosma; W.J. Freeman Chaotic resonnance – Methods and applications for robust clasification of noisy and variable patterns, Int. J. Bifurc. Chaos, Volume 6 (2001), pp. 1607-1629

[154] S. Sinha Noise-free stochastic resonance in simple chaotic systems, Physica A, Volume 270 (1999), pp. 204-214

[155] J. Theiler; S. Eubank; A. Longtin; B. Galdrikian; J.D. Farmer Testing for nonlinearity in time series: the method of surrogate data, Physica D, Volume 58 (1992), pp. 77-94

[156] J. Holzfuss; G. Mayer-Kress An approach to error estimation in the application of dimension algorithms (G. Mayer-Kress, ed.), Dimension and Entropies in Chaotic Systems, Springer, Berlin, 1986, pp. 114-121

[157] P.E. Rapp; T.R. Bashore; J.M. Martinerie; A.M. Albano; I.D. Zimmerman; A.I. Mees Dynamics of brain electrical activity, Brain Topogr., Volume 2 (1989), pp. 99-118

[158] G. Mayer-Kress; S.P. Layne Dimensionality of the human electroencephalogram, Ann. NY Acad. Sci., Volume 504 (1987), pp. 62-87

[159] A.M. Albano; P.E. Rapp On the reliability of dynamical measures of EEG signals (B.H. Jansen; M.E.B. Brandt, eds.), The 2nd Annual Conference on Nonlinear Dynamics Analysis of the EEG, World Scientific, Singapore, 1993, pp. 117-139

[160] L. Glass; D.T. Kaplan; J.E. Lewis Test for deterministic dynamics in real and model neural networks (B.H. Jansen; M.E.B. Brandt, eds.), The 2nd Annual Conference on Nonlinear Dynamics Analysis of the EEG, World Scientific, Singapore, 1993, pp. 223-249

[161] J.A. McEwen; C.B. Anderson Modelling the stationarity and Gaussianity of spontaneous electroencephalographic activity, IEEE Trans. Biomed. Engin., Volume 22 (1975), pp. 363-369

[162] M. Palus Testing for nonlinearity in the EEG (B. Jansen; M. Brandt, eds.), Proc. 2nd Annual Conference on Nonlinear Dynamical Analysis of the EEG, World Scientific, Singapore, 1993, pp. 100-114

[163] D. Prichard; J. Theiler Generating surrogate data for time series with several simultaneously measured variables, Phys. Rev. Lett., Volume 73 (1994), pp. 951-954

[164] D. Prichard; J. Theiler Generalized redundancies for time series analysis, Physica D, Volume 84 (1995), pp. 476-493

[165] M. Palus Testing for nonlinearity using redundancies: quantitative and qualitative aspects, Physica D, Volume 80 (1995), pp. 186-205

[166] M. Palus Nonlinearity in normal human EEG: cycles, temporal asymmetry, nonstationarity and randomness, not chaos, Biol. Cybern., Volume 75 (1996), pp. 389-396

[167] J. Theiler; P.E. Rapp Re-examination of the evidence for low-dimensional non-linear structure in the human electroencephalogram, EEG Clin. Neurophysiol. (1996), pp. 213-222

[168] T. Elbert; W.J. Ray; Z.J. Kowalik; J.E. Skinner; K.E. Graf; N. Birbaumer Chaos and physiology: deterministic chaos in excitable cell assemblies, Physiol. Rev., Volume 74 (1994), pp. 1-47

[169] K. Lehnertz Non-linear time series analysis of intracranial EEG recordings in patient with epilepsy – an overview, Int. J. Psychophysiol., Volume 34 (1999), pp. 45-52

[170] G. Viana Di Prisco; W.J. Freeman Odor-related bulbar EEG spatial patterns analysis during appetire conditioning in rabbits, Behav. Neurosci., Volume 99 (1985), pp. 964-978

[171] W.J. Freeman; G. Viana Di Prisco Spatial patterns differences with discriminated odors manifest chaotic and limit cycles attractors in olfactory bulb of rabbits (G. Palm; A. Aartsen, eds.), Brain Theory, Springer, Berlin, 1986, pp. 97-119

[172] W.J. Freeman EEG analysis gives model of neuronal template-matching mechanism for sensory search with olfactory bulb, Biol. Cybern., Volume 35 (1979), pp. 221-234

[173] W.J. Freeman Simulation of chaotic EEG patterns with a dynamic model of the olfactory system, Biol. Cybern., Volume 56 (1987), pp. 139-150

[174] W.J. Freeman Strange attractors that govern mammalian brain dynamics shown by trajectories of electroencephalography (EEG) potentials, IEEE Trans. CAS, Volume 35 (1988), pp. 781-784

[175] P.E. Rapp; I.D. Zimmermann; A.M. Albano; C. Deguzman; N.N. Greenbaun Dynamics of spontaneous neural activity in the simian motor cortex: the dimension of chaotic neurons, Phys. Lett., Volume 6 (1985), pp. 335-338

[176] J. Röschke; E. Basar The EEG is not a simple noise: strange attractors in intracranial structures (E. Basar, ed.), Dynamics of Sensory an Cognitive Processing by the Brain, Springer Series in Brain Dynamics, 1, Springer-Verlag, Berlin, 1988, pp. 203-216

[177] S. Neuenschwander; J. Martinerie; B. Renault; F.J. Varela A dynamical analysis of oscillatory responses in the optic tectum, Brain Res./Cognitive Brain Res., Volume 1 (1993), pp. 175-181

[178] A. Celleti; A.E.P. Villa Low-dimensional chaotic attractors in the rat brain, Biol. Cybern., Volume 74 (1996), pp. 387-393

[179] R. Hoffman; W. Shi; B. Bunney Nonlinear sequence-dependent structure of nigral dopamine neurone interspike interval firing patterns, Biophysic. J., Volume 69 (1995), pp. 128-137

[180] A. Babloyantz; J.M. Salazar; G. Nicolis Evidence of chaotic dynamics of brain activity during the sleep cycle, Phys. Lett. A, Volume 111 (1985), pp. 152-156

[181] I. Dvorak; A.V. Holden Mathematical Approaches to Brain Functioning Diagnostics, Manchester University Press, Manchester, UK, 1991

[182] K.E. Graf; T. Elbert Dimensional analysis of the waking EEG (E. Basar; T.H. Bullock, eds.), Brain Dynamics. Progress and Perspectives, Springer-Verlag, Berlin, 1989, pp. 174-191

[183] W.S. Pritchard; D.W. Duke Dimensional analysis of no-task human EEG using the Grassberger–Procaccia method, Psychophysiol., Volume 29 (1992), pp. 182-192

[184] T. Elbert; W. Lutzenberger; B. Rockstroh; P. Berg; R.B. Cohen; R. Cohen Physical aspects of the EEG in schizophrenics, Biol. Psychiatry, Volume 32 (1992), pp. 595-606

[185] W.S. Pritchard; D.W. Duke; K.L. Coburn Dimensional analysis of topographic EEG: some methodological considerations (D. Duke; W. Pritchard, eds.), Measuring Chaos in the Human Brain, World Scientific, Singapore, 1991, pp. 181-198

[186] W. Lutzenberger; N. Birbaumer; H. Flor; B. Rockstroh; T. Elbert Dimensional analysis of the human EEG and intelligence, Neurosci. Lett., Volume 143 (1992), pp. 10-14

[187] W.S. Pritchard; K.K. Krieble; D.W. Duke Dimensional analysis of resting human EEG II: surrogate-data testing indicates nonlinearity but not low-dimensional chaos, Psychophysiol., Volume 32 (1995), pp. 486-491

[188] J.J. Wright; D.T.J. Liley Dynamics of the brain at global and microscopic scales: neural networks and the EEG, Behav. Brain Sci., Volume 19 (1996), pp. 285-320

[189] G.B. Ermentrout; J.D. Cowan Large-scale spatially organized activity in neural nets, SIAM J. Appl. Math., Volume 39 (1980), pp. 323-340

[190] A. Babloyantz; A. Destexhe Low-dimensional chaos in an instance of epilepsy, Proc. Natl Acad. Sci. USA, Volume 83 (1986), pp. 3513-3517

[191] L.D. Iasemidis; J.C. Sackellares; H.P. Zaveri; W.J. Williams Phase space topography and the Lyapunov exponent of electrocorticograms in partial seizures, Brain Topogr., Volume 2 (1990), pp. 187-201

[192] L.D. Iasemidis; J.C. Sackellares The evolution with time of the spatial distribution of the largest Lyapunov exponent on the human epileptic cortex (D. Duke; W. Pritchard, eds.), Measuring Chaos in the Human Brain, World Scientific, Singapore, 1991, pp. 49-82

[193] J.P. Pijn; J. Van Neerven; A. Noest; F.H. Lopes da Silva Chaos or noise in EEG signals dependence on state and brain site, EEG Clin. Neurophysiol., Volume 79 (1991), pp. 371-381

[194] P.E. Rapp; A.M. Albano; I.D. Zimmerman; M.A. Jiménez-Montano Phase-randomized surrogates can produce spurious identifications of non-random structure, Phys. Lett. A, Volume 192 (1994), pp. 27-33

[195] T. Schreiber; A. Schmitz Improved surrogate data for nonlinearity tests, Phys. Rev. Lett., Volume 77 (1996), pp. 635-638

[196] T. Schreiber; A. Schmitz Surrogate time series, Physica D, Volume 142 (2000), pp. 346-382

[197] T. Schreiber Is nonlinearity evident in time series of brain electrical activity? (K. Lehnertz; J. Arnhold; P. Grassberger; C. Elger, eds.), Chaos in Brain? Interdisc. Workshop, World Scientific, Singapore, 1999, pp. 13-22

[198] D. Auerbach; P. Cvitanovic; J.-P. Eckmann; G. Gunaratne; I. Procaccia Exploring chaotic motion through periodic orbits, Phys. Rev. Lett., Volume 58 (1987), pp. 2387-2389

[199] P. Cvitanovic Invariant measurement of strange sets in terms of cycles, Phys. Rev. Lett., Volume 61 (1988), pp. 2729-2732

[200] J.N. Weiss; A. Garfinkel; M.L. Spano; W.L. Ditto Chaos and chaos control in biology, J. Clin. Invest., Volume 93 (1994), pp. 1355-1360

[201] E. Ott; C. Grebogi; J.A. Yorke Controlling chaos, Phys. Rev. Lett., Volume 64 (1990), pp. 1196-1199

[202] W.L. Ditto; S.N. Rauseo; M.L. Spano Experimental control of chaos, Phys. Rev. Lett., Volume 65 (1990), pp. 3211-3214

[203] S. Boccaletti; C. Grebogi; Y.-C. Lai; H. Mancini; D. Maza The control of chaos: theory and applications, Phys. Rep., Volume 329 (2000), pp. 103-197

[204] A. Garfinkel; M.L. Spano; W.L. Ditto; J.N. Weiss Controlling cardiac chaos, Science, Volume 257 (1992), pp. 1230-1235

[205] D.J. Christini; J.J. Collins Controlling neuronal noise using chaos control, Phys. Rev. Lett., Volume 75 (1995), pp. 2782-2785

[206] S. Lesher; M.L. Spano; N.M. Mellen; L. Guan; S. Dykstra; A.H. Cohen Evidence for unstable periodic orbits in intact swimming lampreys, isolated spinal cord, and intermediate preparations, Ann. NY Acad. Sci., Volume 860 (1998), pp. 486-491

[207] M. Le Van Quyen; C. Adam; J.-P. Lachaux; J. Martinerie; M. Baulac; B. Renault; F.J. Varela Temporal patterns in human epileptic activity are modulated by perceptual discriminations, NeuroReport, Volume 8 (1997), pp. 1703-1710

[208] P. So; E. Ott; T. Sauer; B.J. Gluckman; C. Grebogi; S.J. Schiff Extracting unstable periodic orbits from chaotic time series data, Phys. Rev. E, Volume 55 (1997), pp. 5398-5417

[209] D. Ruelle What are the measures describing turbulence, Prog. Theor. Phys. (Suppl.), Volume 64 (1978), pp. 339-345

[210] R. Artuso; E. Aurell; P. Cvitanovic Recycling of strange sets: I. Cycle expansions, Nonlinearity, Volume 3 (1990), pp. 325-359

[211] M.J. Feigenbaum Universal behaviour in nonlinear systems, Los Alamos Science, Volume 1 (1980), pp. 4-27

[212] A. Neiman; L. Schimansky-Geier; F. Moss; B. Shulgin; J.J. Collins Synchronization of noisy systems by stochastic signals, Phys. Rev. E, Volume 60 (1999), pp. 284-292

[213] D.W. Crevier; M. Meister Synchronous period-doubling in flicker vision of salamander and man, J. Neurophysiol., Volume 79 (1998), pp. 1869-1878

[214] J. Theiler On the evidence for low-dimensional chaos in an epileptic electroencephalogram, Phys. Lett. A, Volume 196 (1995), pp. 335-341

[215] L. Pezard; J. Martinerie; J. Mullergerking; F. Varela; B. Renault Entropy quantification of human brain spatio temporal dynamics, Physica D, Volume 96 (1996), pp. 344-354

[216] A. Meyer-Lindenberg The evolution of complexity in human brain development: an EEG study, EEG Clin. Neurophysiol., Volume 99 (1997), pp. 405-411

[217] C. Ehlers; J. Havstad; D. Prichard; J. Theiler Low doses of ethanol reduce evidence for nonlinear structure in brain activity, J. Neurosci., Volume 18 (1998), pp. 7474-7486

[218] C.J. Stam; J.P.M. Pijn; P. Suffczynski; F.H.L. da Silva Dynamics of the human alpha rhythm: evidence for non-linearity?, EEG Clin. Neurophysiol., Volume 110 (1999), pp. 1801-1813

[219] K. Lehnertz; C.E. Elger Spatio-temporal dynamics of the primary epileptigenic area in temporal lobe epilepsy characterized by neuronal complexity loss, EEG Clin. Neurophysiol., Volume 95 (1995), pp. 108-117

[220] K. Lehnertz; C.E. Elger Can epileptic seizures be predicted? Evidence from nonlinear time series analysis of brain electrical activity, Phys. Rev. Lett., Volume 80 (1998), pp. 5019-5022

[221] M. Molnar Commentary on Ishiro Tsuda: Low dimensional versus high-dimensional chaos in brain function – Is it and/or issue?, Behav. Brain Sci., Volume 24 (2001), pp. 823-824

[222] M. Molnar The dimensional complexity of the P3 event-related potential: area-specific and task-dependent features, EEG Clin. Neurophysiol., Volume 110 (1999), pp. 31-38

[223] J.E. Skinner; M. Molnar; C. Tomberg The point correlation dimension: performance with nonstationary surrogate data and noise, Integrative Physiol. Behav. Sci., Volume 29 (1994), pp. 217-234

[224] H. Hayashi; S. Ishizuka Chaotic responses of hippocampal CA3 region to a mossy fiber stimulation in vitro, Brain Res., Volume 686 (1995), pp. 194-206

[225] S.J. Schiff; K. Jerger; T. Chang; T. Sauer; P. Aitken Stochastic versus deterministic variability in simple neuronal circuits. II. Hippocampal slice, Biophys. J., Volume 67 (1994), pp. 684-691

[226] Z. Rogowski; I. Gath; E. Bental On the prediction of epileptic seizures, Biol. Cybern., Volume 42 (1981), pp. 9-15

[227] H. Lange; J. Lieb; J.J. Engel; P. Crandall Temporo-spatial patterns of pre-ictal spike activity in human temporal lobe epilepsy, EEG Clin. Neurophysiol., Volume 56 (1983), pp. 543-555

[228] D. Lerner Monitoring changing dynamics with correlation integrals: case study of an epileptic seizure, Physica D, Volume 97 (1996), pp. 563-576

[229] M. Casdagli; L. Iasemidis; R. Gilmore; S. Roper; R. Savit; J. Sackellares Non-linearity in invasive EEG recordings from patients with temporal lobe epilepsy, EEG Clin. Neurophysiol., Volume 102 (1997), pp. 98-105

[230] J. Martinerie; C. Adam; M. Le Van Quyen; M. Baulac; S. Clémenceau; B. Renault; F.J. Varela Epileptic seizures can be anticipated by non-linear analysis, Nat. Med., Volume 4 (1998), pp. 1173-1176

[231] M. Feucht; U. Moller; H. Witte; F. Benninger; S. Asenbaum; D. Prayer; M. Friedrich Application of correlation dimension and pointwise dimension for nonlinear topographical analysis of focal onset seizures, Med. Biol. Eng. Comp., Volume 37 (1999), pp. 208-217

[232] M.J. van-der Heyden; D.N. Velis; B.P.T. Hoekstra; J.P. Pijn; W.V. Boas; C.W.M. van Veelen; P.C. van Rijen; F.H.L. da Silva; J. DeGoede Non-linear analysis of intracranial human EEG in temporal lobe epilepsy, EEG Clin. Neurophysiol., Volume 110 (1999), pp. 1726-1740

[233] M. Le-van Quyen; J. Martinerie; C. Adam; F. Varela Nonlinear analyses of interictal EEG map the brain interdependences in human focal epilepsy, Physica D, Volume 127 (1999), pp. 250-266

[234] J.C. Sackellares; L.D. Iasemidis; D.S. Shiau; R.L. Gilmore; S.N. Roper Epilepsy – When chaos fails, Chaos in Brain? Interdisc. Workshop, 10–12 March 1999, Bonn, Germany, 1999, pp. 112-133

[235] M. Le-van Quyen; J. Martinerie; V. Navarro; M. Boon; P. D'Have; C. Adam; B. renault; F. Varela; M. Baulac Anticipation of epileptic seizures from standard EEG recordings, Lancet, Volume 357 (2001), pp. 183-188

[236] Z. Kowalik; A. Schnitzler; H. Freund; O. Witte Local Lyapunov exponents detect epileptic zones in spike-less interictal MEG recordings, Clin. Neurophysiol., Volume 112 (2001), pp. 60-67

[237] R. Ferri; M. Elia; S.A. Musumeci; C.J. Stam Non-linear EEG analysis in children with epilepsy and electrical status epilepticus during slow-wave sleep (ESES), EEG Clin. Neurophysiol., Volume 112 (2001), pp. 2274-2280

[238] C.J. Stam; B.W. van Dijk Synchronization likelihood: an unbiased measures of generalized synchronization in multivariate data sets, Physica D, Volume 163 (2002), pp. 236-251

[239] G. Widman; D. Bingmann; K. Lehnertz; C. Elger Reduced signal complexity of intracellular recordings: a precursor for epileptiform activity?, Brain Res., Volume 836 (1999), pp. 1546-1630

[240] R. Cerf; M. El-Amri; E. El-Ouasdad; E. Hirsch Non-linear analysis of epileptic seizures – I. Correlation-dimension measurements for absence epilepsy and near-periodic signals, Biol. Cybern., Volume 80 (1999), pp. 247-258

[241] K. Jerger; T. Netoff; J. Francis; T. Sauer; S. Pcora; L. Weinstein; S.J. Schiff Early seizure detection, J. Clin. Neurophysiol., Volume 18 (2001), pp. 259-268

[242] A. Arieli; A. Sterkin; A. Grinvald; A. Aertsen Dynamics of ongoing activity: explanation of the large variability in evoked cortical responses, Science, Volume 273 (1996), pp. 1868-1871

[243] K. Aihara; T. Takabe; M. Toyoda Chaotic neural networks, Phys. Lett. A, Volume 144 (1990), pp. 333-340

[244] J.E. Lewis; L. Glass Steady states, limit cycles, and chaos in models of complex biological networks, Int. J. Bifurc. Chaos, Volume 1 (1991), pp. 477-483

[245] S. Nara; P. Davis; M. Kawachi; H. Totsuji Chaotic memory dynamics in a recurrent neural network with cycle memories embedded by pseudo-inverse method, Int. J. Bifurc. Chaos, Volume 5 (1995), pp. 1205-1212

[246] L. Chen; K. Aihara Chaotic simulated annealing by a neural network model with transcient chaos, Neural Networks, Volume 8 (1995), pp. 915-930

[247] P.A. Robinson; C.J. Rennie; J.J. Wright Propagation and stability of waves of electrical activity in the cerebral cortex, Phys. Rev. E, Volume 56 (1997), pp. 826-840

[248] K. Kaneko; I. Tsuda Complex Systems: Chaos and Beyond: A Constructive Approach with Applications in Life Sciences, Springer, 2001

[249] J.J. Wright Integrative Neuroscience, Harwood Academic Publishers, 2000

[250] K. Aihara Chaos engineering and its application to parallel-distributed processing with chaotic neural networks, Proc. IEEE, Volume 90 (2002), pp. 919-930

[251] W.J. Freeman; D.P.G. Viana Relation of olfactory EEG to behavior: time-series analysis, Behav. Neurosci., Volume 100 (1986), pp. 753-763

[252] W.J. Freeman On the problem of anomalous dispersion in chaoto-chaotic phase transitions of neural masses, and its significance for the management of perceptual information in brain (H. Haken; M. stadler, eds.), Synergetics of Cognition, Springer, Berlin, 1990, pp. 126-142

[253] W.J. Freeman Neurodynamics: An Exploration in Mesoscopic Brain Dynamics, Springer-Verlag, London, 2000

[254] W.J. Freeman Mesoscopic neurodynamics: from neuron to brain, J. Physiol., Volume 94 (2000), pp. 303-322

[255] Y. Yao; W.J. Freeman Model of biological patterns recognition with spatially chaotic dynamics, Neural Networks, Volume 3 (1990), pp. 153-170

[256] W.J. Freeman; J.M. Barrie Chaotic oscillations and the genesis of meaning in cerebral cortex (G. Buzsaki, ed.), Temporal Coding in the Brain, Springer-Verlag, Berlin, 1994, pp. 13-37

[257] L. Kay; K. Shimoide; W.J. Freeman Comparison of EEG time series from rat olfactory system with model composed of nonlinear coupled oscillators, Int. J. Bifurc. Chaos, Volume 5 (1995), pp. 849-858

[258] N.E. Schoppa; G.L. Westbrook AMPA autoreceptors drive correlated spiking in olfactory bulb glomeruli, Nat. Neurosci., Volume 5 (2002), pp. 1194-1202

[259] P.E. Castillo; A. Carleton; J.D. Vincent; P.M. Lledo Multiple and opposing roles of cholinergic transmission in the main olfactory bulb, J. Neurosci., Volume 19 (1999), pp. 9180-9191

[260] J.S. Isaacson Glutamate spillover mediates excitatory transmission in the rat olfactory bulb, Neuron, Volume 23 (1999), pp. 377-384

[261] S. Grossberg Adaptive pattern classification and universal recoding. II. Feedback, expectation, olfaction, illusions, Biol. Cybern., Volume 23 (1976), pp. 187-202

[262] J.A. Anderson; J.W. Silverstein; S.A. Ritz; R.S. Jones Distinctive features, categorical perception, and probability learning. Some applications of a neural model, Psychol. Rev., Volume 84 (1977), pp. 413-451

[263] J.J. Hopfield Neural networks and physical system with emergent collective computational abilities, Proc. Natl Acad. Sci. USA, Volume 79 (1982), pp. 2554-2558

[264] T. Kohonen Self-organization and Associative Memory, Springer-Verlag, New York, 1984

[265] D.E. Rumelhart; G.E. Hinton; R.J. Williams Learning representations by backpropagating errors, Nature, Volume 323 (1986), pp. 533-536

[266] S. Grossberg The Adaptative Brain. I. Cognition, Learning, Reinforcement, and Rhythm, Elsevier, North-Holland, 1987

[267] G. Laurent; M. Stopfer; R. Friedrich; M. Rabinovich; A. Volkovskii; H. Abarbanel Odor encoding as an active, dynamical process: experiments, computation and theory, Annu. Rev. Neurosci., Volume 24 (2001), pp. 263-297

[268] G. Laurent Olfactory network dynamics and the coding of multidimensional signals, Natl Rev. Neurosci., Volume 3 (2002), pp. 884-895

[269] G. Laurent Dynamical representation of odors by oscillating and evolving neural assemblies, Trends Neurosci., Volume 19 (1996), pp. 489-496

[270] R.W. Friedrich; G. Laurent Dynamic optimization of odor representations by slow temporal patterning of mitral cell activity, Science, Volume 291 (2001), pp. 889-894

[271] G. Laurent; M. Wehr; H. Davidowitz Temporal representations of odors in an olfactory network, J. Neurosci., Volume 16 (1996), pp. 3837-3847

[272] K. MacLeod; G. Laurent Distinct mechanisms for synchronization and temporal patterning of odor-encoding neural assemblies, Science, Volume 274 (1996), pp. 976-979

[273] K. MacLeod; A. Backer; G. Laurent Who reads temporal information contained across synchronized and oscillatory spike trains?, Nature, Volume 395 (1998), pp. 693-698

[274] M. Stopfer; S. Bhagavan; B.H. Smith; G. Laurent Impaired odour discrimination on desynchronization of odour-encoding neural assemblies, Nature, Volume 390 (1997), pp. 70-74

[275] M. Bazhenov; M. Stopfer; M. Rabinovich; H.D. Abarbanel; T.J. Sejnowski; G. Laurent Model of cellular and network mechanisms for odor-evoked temporal patterning in the locust antennal lobe, Neuron, Volume 30 (2001), pp. 569-581

[276] M. Bazhenov; M. Stopfer; M. Rabinovich; R. Huerta; H.D. Abarbanel; T.J. Sejnowski; G. Laurent Model of transient oscillatory synchronization in the locust antennal lobe, Neuron, Volume 30 (2001), pp. 553-567

[277] M. Cohen; S. Grossberg Neural networks and physical systems with emergent computationnal abilities, Proc. Natl Acad. Sci. USA, Volume 79 (1982), pp. 2554-2558

[278] M.I. Rabinovich; A. Volkovskii; P. Lecanda; R. Huerta; H.D.I. Abarbanel; G. Laurent Dynamical encoding by networks of competing neuron groups: winnerless competition, Phys. Rev. Lett., Volume 87 (2001), p. 068102

[279] M. Wehr; G. Laurent Odour encoding by temporal sequences of firing in oscillating neural assemblies, Nature, Volume 384 (1996), pp. 162-166

[280] P. Varona; M. Rabinovich; A.I. Selverston; Y.I. Arshavsky Winnerless competition between sensory neurons generate chaos, Chaos, Volume 12 (2002), pp. 672-677

[281] Y.V. Panchin; Y.I. Arshavsky; T.G. Deliagina; L.B. Popova; G.N. Orlovsky Control of locomotion in marine mollusk Clione Limacina. IX. Neuronal mechanisms of spatial orientation, J. Neurophysiol., Volume 73 (1995), pp. 1924-1937

[282] T.G. Deliagina; Y.I. Arshavsky; G.N. Orlovsky Control of spatial orientation in a mollusc, Nature, Volume 393 (1998), pp. 172-175

[283] Y.V. Panchin; L.B. Popova; T.G. Deliagina; G.N. Orlovsky; Y.I. Arshavsky Control of locomotion in marine mollusk Clione Limacina. VIII. Cerebropedal neurons, J. Neurophysiol., Volume 73 (1995), pp. 1912-1923

[284] Y.I. Arshavsky; T.G. Deliagina; G.N. Gamkrelidze; G.N. Orlovsky; Y.V. Panchin; L.B. Popova Pharmacologically induced elements of the hunting and feeding behavior in the pteropod mollusk Clione Limacina. II. Effects of physostigmine, J. Neurophysiol., Volume 69 (1993), pp. 522-532

[285] J. Szentagothai The Ferrier Lecture, 1977. The neuron network of the cerebral cortex: a functional interpretation, Proc. R. Soc. Lond. B: Biol. Sci., Volume 201 (1978), pp. 219-248

[286] J. Szentagothai The neuronal architectonic principle of the neocortex, Ann. Acad. Bras. Cienc., Volume 57 (1985), pp. 249-259

[287] W.S. Mc Culloch; W.H. Pitts A logical calculus of the ideas immanent in neural nets, Bull. Math. Biophys., Volume 5 (1943), pp. 115-133

[288] I. Tsuda; E. Körner; H. Shimizu Memory dynamics in asynchronous neural networks, Prog. Theor. Phys., Volume 78 (1987), pp. 51-71

[289] I. Tsuda Chaotic itinerancy as a dynamical basis of Hermeneutics in brain and mind, World Futures, Volume 32 (1991), pp. 167-185

[290] I. Tsuda Dynamic link of memory–chaotic memory map in nonequilibrium neural networks, Neural Networks, Volume 5 (1992), pp. 313-326

[291] I. Tsuda Toward an interpretation of dynamic neural activity in terms of chaotic dynamical systems, Behav. Brain Sci., Volume 24 (2001), pp. 793-810

[292] M. Quoy; J. Blanquet; E. Dauce Commentary on Ishiro Tsuda: Learning and control with chaos: from biology to robotics, Behav. Brain Sci., Volume 24 (2001), pp. 824-825

[293] W.J. Freeman The creation of perceptual meanings in cortex through chaotic itinirancy and sequential state transitions induced by sensory stimuli (P. Kruse; M. Stadler, eds.), Ambiguity in Mind and Nature, Springer-Verlag, 1995, pp. 421-437

[294] K. Matsumoto; I. Tsuda Extended informations in one dimensionnal-maps, Physica D, Volume 26 (1987), pp. 347-357

[295] I. Tsuda Can stochastic renewal of maps be a model for cerebral cortex?, Physica D, Volume 75 (1994), pp. 165-178

[296] K. Matsumoto; I. Tsuda Noise-induced order, J. Stat. Phys., Volume 31 (1983), pp. 87-106

[297] I. Tsuda A new type of self-organization associated with chaotic dynamics in neural networks, Int. J. Neural Syst., Volume 7 (1996), pp. 451-459

[298] I. Tsuda; A. Yamaguchi Singular-continuous nowhere-differentiable attractors in neural systems, Neural Networks, Volume 11 (1998), pp. 927-937

[299] J.K. Foster Commentary on Ishiro Tsuda: Cantor coding and chaotic intinirancy: relevance for episodic memory, amnesia, and the hippocampus, Behav. Brain Sci., Volume 24 (2001), pp. 815-816

[300] A. Raffone; C. van Leeuwen Commentary on Ishiro Tsuda: Chaos and neural coding: is the binding problem a pseudo-problem?, Behav. Brain Sci., Volume 24 (2001), pp. 826-827

[301] H.D. Abarbanel; M.I. Rabinovich Neurodynamics: nonlinear dynamics and neurobiology, Cur. Opin. Neurobiol., Volume 11 (2001), pp. 423-430

[302] C.C. King Fractal and chaotic dynamics in nervous systems, Prog. Neurobiol., Volume 36 (1991), pp. 279-308

[303] J.S. Nicolis Should a reliable information processor be chaotic?, Kybernetes, Volume 11 (1982), pp. 269-274

[304] J.S. Nicolis The role of chaos in reliable information processing, J. Franklin Inst., Volume 317 (1984), pp. 289-307

[305] J.S. Nicolis; I. Tsuda Chaotic dynamics of information processing: the ‘magic number seven plus-minus two’ revisited, Bull. Math. Biol., Volume 47 (1985), pp. 343-365

[306] P. Grassberger Toward a quantitative theory of self-generated complexity, Int. J. Theor. Phys., Volume 25 (1986), pp. 907-938

[307] P. Grassberger Information content and predictability of lumped and distributed dynamical systems, Physica Scripta, Volume 40 (1989), pp. 107-111

[308] R.R. de Ruyter van Steveninck; G.D. Lewen; S.P. Strong; R. Koberle; W. Bialek Reproducibility and variability in neural spike trains, Science, Volume 275 (1997), pp. 1805-1808

[309] F. Rieke; D. Warland; R.R. de Ruyter van Steveninck; W. Bialek Spikes: exploring the neural code, Computational Neuroscience, MIT Press, Cambridge, MA, USA, 1997

[310] A. Borst; F.E. Theunissen Information theory and neural coding, Nat. Neurosci., Volume 2 (1999), pp. 947-957

[311] G.T. Buracas; T.D. Albright Gauging sensory representations in the brain, Trends Neurosci., Volume 22 (1999), pp. 303-309

[312] W. Bialek; F. Rieke; R.R. de Ruyter van Steveninck; D. Warland Reading a neural code, Science, Volume 252 (1991), pp. 1854-1857

[313] L. Kay Commentary on Ishiro Tsuda: Chaotic itinerancy: insufficient perceptual evidence, Behav. Brain Sci., Volume 24 (2001), pp. 819-820

[314] R.D. Beer Computational and dynamical languages for autonomous agents (R.F. Port; T. Van Gelder, eds.), Exploration in the Dynamics of Cognition: Mind as Motion, MIT Press, 1995, pp. 121-147

[315] R.D. Beer Framing the debate between computationnal and dynamical approaches to cognitive science, Behav. Brain Sci., Volume 21 (1998), p. 630

[316] R.D. Beer Dynamical approaches to cognitive science, Trends Cogn. Sci., Volume 4 (2000), pp. 91-99

[317] N. Wiener Cybernetics: or the Control and Communication in the Animal and the Machine, Wiley, New York, 1948

[318] C.E. Shannon Mathematical theory of communication, The Bell Syst. Techn. J., Volume 27 (1948), pp. 379-423 (623–656)

[319] J.A. Fodor The Language of Thought, Harvard University Press, USA, 1975

[320] Z.W. Pylyshyn Computation and Cognition, MIT Press, 1984

[321] D. Rumelhart; J.L. Mc Clelland Foundations, Parallel Distributed Processing, 1, MIT Press, Cambridge, UK, 1986

[322] P. Smolensky On the proper treatment of connectionism, Behav. Brain Sci., Volume 11 (1988), pp. 1-74

[323] T. Van Gelder The dynamical hypothesis in cognitive science, Behav. Brain Sci., Volume 21 (1998), pp. 615-665

[324] T. Van Gelder; R.F. Port It's about time: an overview of the dynamical approach to cognition (R.F. Port; T. Van Gelder, eds.), Exploration in the Dynamics of Cognition: Mind as Motion, MIT Press, 1995, pp. 1-43

[325] R.H. Abraham; C.D. Shaw Dynamics – The Geometry of Behavior, Addison-Wesley, Redwood City, CA, USA, 1992

[326] J.L. Elman Language as dynamical system (R.F. Port; T. Van Gelder, eds.), Exploration in the Dynamics of Cognition: Mind as Motion, MIT Press, 1995, pp. 195-225

[327] J.A.S. Kelso Dynamic Patterns: The Self-Organization of Brain and Behavior, MIT Press, Cambridge, UK, 1995

[328] J.P. Crutchfield Is anything ever new? Considering emergence (G. Cowan; D. Pines; D. Melzner, eds.), Complexity: Metaphors, Models, and Reality, SFI Series in the Sciences of Complexity XIX, Addison-Wesley, Redwood City, CA, USA, 1994, pp. 479-497

[329] G. Schoner; J.A. Kelso Dynamic pattern generation in behavioral and neural systems, Science, Volume 239 (1988), pp. 1513-1520

[330] M.T. Turvey Coordination, Am. Psychol., Volume 45 (1990), pp. 938-953

[331] J.L. Elman Distributed representations, simple recurrent networks and grammatical structure, Mach. Learn., Volume 7 (1991), pp. 195-225

[332] M.T. Turvey; C. Carello Some dynamical themes in perception and action (R.F. Port; T. Van Gelder, eds.), Exploration in the Dynamics of Cognition: Mind as Motion, MIT Press, 1995, pp. 373-401

[333] J.B. Pollack On wings of knowledge: a review of Allen Newell's unified theories of cognition, Artif. Intell., Volume 59 (1992), pp. 355-369

[334] M. Giunti Dynamical models of cognition (R.F. Port; T. Van Gelder, eds.), Exploration in the Dynamics of Cognition: Mind as Motion, MIT Press, 1995, pp. 549-571

[335] J.T. Townsend; J. Busemeyer Dynamics representation of decision-making (R.F. Port; T. Van Gelder, eds.), Exploration in the Dynamics of Cognition: Mind as Motion, MIT Press, 1995, pp. 101-120

[336] J.B. Pollack The introduction of dynamical recognizers (R.F. Port; T. Van Gelder, eds.), Exploration in the Dynamics of Cognition: Mind as Motion, MIT Press, 1995, pp. 283-312

[337] K. Kaneko Period-doubling of kink-antikink patterns quasiperiodicity in antiferro-like structures, and spatial intermittency in coupled logistic lattice, Prog. Theor. Phys., Volume 72 (1984), p. 480

[338] K. Kaneko Simulating physics with coupled map lattices (K. Kawasaki; A. Onuki; M. Suzuki, eds.), Formation, Dynamics and Statistics of Patterns, World Scientific, 1990, pp. 1-52

[339] K. Kaneko Overview of coupled map lattices, Chaos, Volume 2 (1992), pp. 279-283

[340] D. DeMaris Attention, depth gestalts, and spatially extended chaos in the perception of ambiguous figures (D. Levine; V. Brown; T. Shirey, eds.), Oscillations in Neural Systems, L. Erlbaum Associates, 2000, pp. 239-258

[341] D. Marr Vision, Freeman, W.H. and Compagny, San Francisco, 1982

[342] P. Erdi Commentary on Ishiro Tsuda: How to construct a brain theory?, Behav. Brain Sci., Volume 24 (2001), p. 815

[343] I. Tsuda; K. Tadaki A logic-based dynamical theory for a genesis of biological threshold, Biosystems, Volume 42 (1997), pp. 45-64