The search for the mouse X-chromosome inactivation centre | Genetics Research | Cambridge Core (original) (raw)

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The phenomenon of X-chromosome inactivation in female mammals, whereby one of the two X chromosome present in each cell of the female embryo is inactivated early in development, was first described by Mary Lyon in 1961. Nearly 30 years later, the mechanism of X-chromosome inactivation remains unknown. Strong evidence has accumulated over the years, however, for the involvement of a major switch or inactivation centre on the mouse X chromosome. Identification of the inactivation centre at the molecular level would be an important step in understanding the mechanism of X-inactivation. In this paper we review the evidence for the existence and location of the X-inactivation centre on the mouse X-chromosome, present data on the molecular genetic mapping of this region, and describe ongoing strategies we are using to attempt to identify the inactivation centre at the molecular level.

References

Allerdice, P. W., Miller, O. J., Miller, D. A. & Klinger, H. P. (1978). Spreading of inactivation in an (X;14) translocation. American Journal of Medical Genetics 2, 233–240.Google Scholar

Avner, P. R., Arnaud, D., Amar, L., Cambrou, J., Winking, H. & Russell, L. B. (1987). Characterization of a panel of somatic cell hybrids for regional mapping of the mouse X chromosome. Proceedings of the National Academy of Sciences, U.S.A. 84, 5330–5334.CrossRefGoogle ScholarPubMed

Brockdorff, N., Fisher, E. M. C., Cavanna, J. S., Lyon, M. F. & Brown, S. D. M. (1987 a). Construction of a detailed molecular map of the mouse X chromosome by microcloning and interspecific crosses. EMBO Journal 6, 3291–3297.Google Scholar

Brockdorff, N., Cross, G. S., Cavanna, J. S., Fisher, E. M. C., Lyon, M. F., Davies, K. E. & Brown, S. D. M. (1987 b). The mapping of a cDNA from the human X-linked Duchenne muscular dystrophy gene to the mouse X chromosome. Nature 328, 166–168.CrossRefGoogle Scholar

Brockdorff, N., Amar, L. L. & Brown, S. D. M. (1989). Pulse-field linkage of the P3, G6pd and Cf8 genes on the mouse X chromosome: demonstration of synteny at the physical level. Nucleic Acid Research 17, 1315–1326.CrossRefGoogle ScholarPubMed

Brockdorff, N., Montague, M., Smith, S. & Rastan, S. (1990). Construction and analysis of CpG-rich island libraries from the mouse X-chromosome. Genomics (in press).CrossRefGoogle Scholar

Brown, C. J., Sekiguchi, T., Nishimoto, T. & Willard, H. F. (1989). Regional localization of CCG 1 gene which complements hamster cell cycle mutation BN462 to Xq11-Xq13. Somatic Cell and Molecular Genetics 15, 93–96.CrossRefGoogle Scholar

Brown, C. J. & Willard, H. F. (1989). Localization of the X inactivation centre (XIC) to Xq13. Cytogenetics and Cell Genetics, 51, Abstract A2633: HGM10.Google Scholar

Brown, S. D. M. (1989). The Mouse Genome at Oxford. What can mouse gene mapping do for mammalian genetics? Bioessays 11, 191–193.CrossRefGoogle ScholarPubMed

Bücher, Th., Linke, I. M., Dünnwald, M., West, J. D. & Cattanach, B. M. (1985). Xce genotype has no impact on the effect of imprinting on X-chromosome expression in mouse yolk-sac endoderm. Genetical Research 47, 43–48.CrossRefGoogle Scholar

Burke, D. T., Carle, G. F. & Olson, M. V. (1987). Cloning of large segments of exogenous DNA into yeast by means of artificial chromosome vectors. Science 236, 806–812.CrossRefGoogle ScholarPubMed

Cattanach, B. M. & Isaacson, J. H. (1965). Genetic control over the inactivation of autosomal genes attached to the X-chromosome. Zeitscherift für Vererbungslehre 96, 313–323.Google ScholarPubMed

Cattanach, B. M. (1966). The location of Cattanach's translocation into the X-chromosome linkage map of the mouse. Genetical Research 8, 253–256.CrossRefGoogle ScholarPubMed

Cattanach, B. M. & Isaacson, J. H. (1967). Controlling elements in the mouse X chromosome. Genetics 57, 331–346.CrossRefGoogle ScholarPubMed

Cattanach, B. M., Pollard, C. E. & Perez, J. N. (1969). Controlling elements in the mouse X-chromosome. I. Interaction with X-linked genes. Genetical Research 14, 223–235.Google Scholar

Cattanach, B. M. & Papworth, D. (1981). Controlling elements in the mouse. V. Linkage tests with X-linked genes. Genetical Research 38, 57–70.CrossRefGoogle ScholarPubMed

Cattanach, B. M. & Johnston, P. (1981). Evidence of non-random X-inactivation in the mouse. Hereditas 94, 5.Google Scholar

Cattanach, B. M. (1983). Location of Xce using Xcea/Xcec heterozygates. Mouse News Letter 69, 24.Google Scholar

Cattanach, B. M., Rasberry, C. & Andrews, S. J. (1989 a). Further Xce linkage data. Mouse News Letter 83, 165.Google Scholar

Cattanach, B. M. (1989 b). Ta 25H, a presumptive X chromosome deletion. Mouse News Letter 83, 160.Google Scholar

Cavanna, J. S., Coulton, G., Morgan, J. E., Brockdorff, N., Forrest, S. M., Davies, K. E. & Brown, S. D. M. (1988). Molecular and genetic mapping of the mouse mdx locus. Genomics 3, 337–341.Google Scholar

De Mars, R., LeVan, S. L., Trend, B. L. & Russell, L. B.Abnormal ornithine carbamoyl transferase in mice having the sparse-fur mutation. Proceedings of the National Academy of Sciences, U.S.A. 73, 1693–1697.Google Scholar

Disteche, C. M., Eicher, E. M. & Latt, S. A. (1979). Late replication in an X-autosome translocation in the Mouse. Correlation with genetic inactivation and evidence for selective effects during embryogenesis. Proceedings of the National Academy of Sciences, U.S.A. 76, 5234–5238.CrossRefGoogle Scholar

Drews, U., Blecher, S. R., Owen, D. A. & Ohno, S. (1974). Genetically directed preferential X-activation seen in mice. Cell 1, 3–8.CrossRefGoogle Scholar

Eicher, E. M. (1970). X-autosome translocations in the mouse: total inactivation versus partial inactivation of the X chromosome. Advances in Genetics 16, 175–259.Google Scholar

Evans, M. J. & Kaufman, M. H. (1981). Establishment in culture of pluripotential cells from mouse embryos. Nature 292, 154–156.CrossRefGoogle ScholarPubMed

Falconer, D. S. & Isaacson, J. H. (1972). Sex-linked variegation and modification by selection in brindled mice. Genetical Research 20, 291–316.CrossRefGoogle Scholar

Grahn, D., Lea, R. A. & Hulesch, J. (1970). Location of an X-inactivation controller gene on the normal X chromosome of the mouse. Genetics 64, S25.Google Scholar

Johnston, P. G. & Cattanach, B. M. (1981). Controlling elements in the mouse. IV. Evidence of non-random X-inactivation. Genetical Research 37, 151–160.CrossRefGoogle ScholarPubMed

Keer, J. T., Hamvas, R. M. J., Brockdorff, N., Page, D., Rastan, S. & Brown, S. D. M. (1990). The long range genetic mapping of the mouse X-inactivation centre region. Genomics (in press).CrossRefGoogle Scholar

Lubahn, D. B., Joseph, D. R., Sullivan, P. M., Willard, H. F., French, F. S. & Wilson, E. M. (1988). Cloning of the human and androgen receptor complementary DNA and localization to the X chromosome. Science 240, 327–330.CrossRefGoogle ScholarPubMed

Lyon, M. F., Zenthon, J., Evans, E. P., Burtenshaw, M. D., Wareham, K. A. & Williams, E. D. (1986). Lack of inactivation of a mouse X-linked gene physically separated from the inactivation centre. Journal of Embryology and Experimental Morphology 97, 75–85.Google ScholarPubMed

Mattei, M. G., Mattei, J. F., Vidal, I. & Giraud, F. (1981). Structural anomalies of the X chromosome and inactivation centre. Human Genetics 56, 401–408.Google Scholar

Melton, D. W., McEwan, C., McKie, A. B. & Reid, A. M. (1986). Expression of the mouse HPRT gene: deletional analysis of the promoter region of an X-chromosome linked housekeeping gene. Cell 44, 319–328.CrossRefGoogle ScholarPubMed

Monk, M. & Harper, M. I. (1979). Sequential X-chromosome inactivation coupled with cellular differentiation in early mouse embryos. Nature 281, 311–313.CrossRefGoogle ScholarPubMed

Mullins, L. J., Grant, S. G., Stephenson, D. A. & Chapman, V. M. (1987). Multilocus molecular map of the mouse X-chromosome. Genomics 3, 187–194.Google Scholar

Ohno, S., Geller, L. N. & Kan, J. (1974). The analysis of Lyon's hypothesis through preferential X-inactivation. Cell 1, 175–184.CrossRefGoogle Scholar

Paterno, G. D., Adra, C. N. & McBurney, M. W. (1985). X chromosome reactivation in mouse embryonal carcinoma cells. Molecular and Cellular Biology 5, 2705–2712.Google ScholarPubMed

Rastan, S. (1982). Primary non-random X-inactivation caused by controlling elements in the mouse demonstrated at the cellular level. Genetical Research 40, 139–147.CrossRefGoogle ScholarPubMed

Rastan, S. (1983). Non-random X-chromosome inactivation in mouse X-autosome translocations - location of the inactivation centre. Journal of Embryology and Experimental Morphology 78, 1–22.Google ScholarPubMed

Rastan, S. & Cattanach, B. M. (1983). Interaction between the Xce locus and imprinting of the paternal X chromosome in mouse yolk-sac endoderm. Nature 303, 635–637.CrossRefGoogle ScholarPubMed

Rastan, S. & Robertson, E. J. (1985). X-chromosome deletions in embryo-derived (EK) cell lines associated with lack of X-chromosome inactivation. Journal of Embryology and Experimental Morphology 90, 379–388.Google ScholarPubMed

Robertson, E. J., Kaufman, M. H., Bradley, A. & Evans, M. J. (1983 a). Isolation, properties and karyotype analysis of pluripotential (EK) cell lines from normal and parthenogenetic embryos. In Teratocarcinoma Stem Cells (ed. Silver, L. M., Martin, G. R. and Strickland, S.), Cold Spring Harbor Conferences on Cell Proliferation Vol. 10. CSH Press.Google Scholar

Robertson, E. J., Evans, M. J. & Kaufman, M. H. (1983 b). X-chromosome instability in pluripotential stem cell lines derived from parthenogenetic embryos. Journal of Embryology and Experimental Morphology 74, 297–309.Google ScholarPubMed

Russell, L. B. (1963). Mammalian X-chromosome action: inactivation limited in spread and in region of origin. Science 140, 976–978.CrossRefGoogle ScholarPubMed

Russell, L. B. (1971). Attempts to demonstrate different inactivating states for normal mouse X chromosome. Genetics 68, S55–56.Google Scholar

Russell, L. B. & Cacheiro, N. L. A. (1978). The use of mouse X-autosome translocations in the study of X inactivation pathways and non-randomness. In Genetic Mosaics and Chimeras in Mammals (ed. Russell, L. B.). New York and London: Plenum Press.CrossRefGoogle Scholar

Russell, L. B. (1983). In Genetics of the Mammalian X-chromosome Part A. Basic Mechanisms of X-chromosome Behaviour (ed. Sandberg, A. A.), p. 205. New York: Liss.Google Scholar

Tabor, A., Anderson, O., Niebuhr, E. & Sardemann, H. (1983). Interstitial deletion in the ‘critical region’ of the long arm of the X chromosome in a mentally retarded boy and his normal mother. Human Genetics 64, 196–199.CrossRefGoogle Scholar

Takagi, N. & Martin, G. R. (1984). Studies of the temporal relationship between the cytogenetic and biochemical manifestations of X-chromosome inactivation during the differentiation of LT-1 teratocarcinoma stem cells. Developmental Biology 103, 425–433.Google Scholar

Thomas, K. R. & Cappechi, M. R. (1987). Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell 51, 503–512.CrossRefGoogle ScholarPubMed

Thompson, S., Clarke, A. R., Pow, A. M., Hooper, M. L. & Melton, D. W. (1989). Germ line transmission and expression of a corrected HPRT gene produced by gene targeting in embryonic stem cells. Cell 56, 313–321.Google Scholar