An environmental assessment of the parasite fauna of the reef-associated grouper Epinephelus areolatus from Indonesian waters | Journal of Helminthology | Cambridge Core (original) (raw)

Abstract

Sixty Epinephelus areolatus were examined for metazoan fish parasites in Indonesia, off Segara Anakan lagoon, Java and in Balinese waters. The study revealed 21 different parasite species, and 14 new host and locality records. The anisakid nematodes Anisakis typica and, for the first time in Indonesia, Anisakis sp. HC-2005 were identified by using molecular methods. Ecological parameters were calculated for both sites off the anthropogenically influenced Segara Anakan lagoon and the relatively undisturbed reference site at the southern Balinese coast. The fish from Segara Anakan demonstrated a significantly higher enzymatic activity (Hepatosomatic index) and a significantly reduced number of heteroxenous gut helminths (e.g. the digenean Didymodiclinus sp., the nematode Raphidascaris sp. and the acanthocephalan Serrasentis sagittifer). Other regional differences for E. areolatus included ecto-/endoparasite ratio, endoparasite diversity, the parasite species composition and prevalence of infection of the respective parasite species. We applied the stargraph method to visualize observed regional differences using grouper parasites as biological indicators for the sampled coastal ecosystems at both sampling sites.

References

Allen, G.R. & Werner, T. (2002) Coral reef fish assessment in the ‘coral triangle’ of southeastern Asia. Environmental Biology of Fishes 65, 209–214.Google Scholar

Asmanelli, , Yuliansyah, H. & Muchari, (1993) Penyakit ikan laut di lokasi Keramba Jaring Apung di Kepulauan Riau. [Marine fish diseases in floating net cages in Riau Archipelago.]. Prosiding Seminar hasil penelitian perikanan budidaya pantai, 16–19 July 1993, Maros, Indonesia , pp. 13–24.Google Scholar

Bell, S. & Morse, S. (2003) Measuring sustainability: Learning by doing. London, Earthscan Publications.Google Scholar

Bray, R.A. & Palm, H.W. (2009) Bucephalids (Digenea: Bucephalidae) from marine fishes off the south-western coast of Java, Indonesia, including the description of two new species of and comments on the marine fish digenean fauna of Indonesia. Zootaxa 2223, 1–24.Google Scholar

Bu, S.S.H., Leong, T.S., Wong, S.Y., Woo, Y.S.N. & Foo, R.W.T. (1999) Three diplectanid monogeneans from marine finfish (Epinephelus sp.) in the Far East. Journal of Helminthology 73, 301–312.Google Scholar

Burhanuddin, & Djamali, A. (1978) Parasit Anisakis sebagai petunjuk perbedaan populasi ikan laying, Decapterus russelli Ruppell, di laut Jawa. Osean. Indonesia 9, 1–11.Google Scholar

Burhanuddin, & Djamali, A. (1983) Pengamatan larva Anisakidae pada ikan laut di laut Jawa dan sekitarnya. Osean. Indonesia 16, 19–27.Google Scholar

Bush, O., Lafferty, A.D., Lotz, J.M. & Shostak, A.W. (1997) Parasitology meets ecology on its own terms: Margolis et al. revisited. Journal of Parasitology 83, 575–583.CrossRefGoogle Scholar

Dsikowitzky, L., Nordhaus, I., Jennerjahn, T., Khrycheva, P., Sivatharshan, Y., Yuwono, E. & Schwarzbauer, J. (2011) Anthropogenic organic contaminants in water, sediments and benthic organisms of the mangrove-fringed Segara Anakan Lagoon, Java, Indonesia. Marine Pollution Bulletin 62, 851–862.Google Scholar

Dzikowski, R., Paperna, I. & Diamant, A. (2003) Use of fish parasite species richness indices in analyzing anthropogenically impacted coastal marine ecosystems. Helgoland Marine Research 57, 220–227.Google Scholar

Farjallah, S., Ben Slimane, B., Busi, M., Paggi, L., Amor, N., Blel, H., Said, K. & D'Amelio, S. (2008) Occurrence and molecular identification of Anisakis spp. from the North African coasts of Mediterranean Sea. Parasitology Research 102, 371–379.Google Scholar

Gray, J.S. (1997) Marine biodiversity: patterns, threats and conservation needs. Biodiversity and Conservation 6, 153–175.CrossRefGoogle Scholar

Hadidjaja, P., Ilahude, H.D., Mahfudin, B. & Malikusworo, H. (1978) Larvae of Anisakidae in marine fish of coastal waters near Jakarta, Indonesia. American Journal of Tropical Medical Hygiene 27, 51–54.CrossRefGoogle ScholarPubMed

Hafeezullah, M. & Siddiqi, A.H. (1970) Digenetic trematodes of marine fishes of India. Part I. Bucephalidae and Cryptogonimidae. Indian Journal of Helminthology 22, 1–22.Google Scholar

Harris, E. (2001) Status of Indonesian fisheries today and the research needed .Google Scholar

Hechinger, R.F., Lafferty, K.D., Huspeni, T.C., Andrew, J.B. & Armand, M.K. (2007) Can parasites be indicators of free-living diversity? Relationships between species richness and the abundance of larval trematodes and of local benthos and fishes. Oecologia 151, 82–92.Google Scholar

Heemstra, P.C. & Randall, J.E. (1993) FAO species catalogue. Vol. 16. Groupers of the world. (Family Serranidae, Subfamily Epinephelinae). An annotated and illustrated catalogue of the grouper, rockcod hind, coral grouper and lyretail species known to date. FAO Fisheries Synopses 125 (16), 382 pp.Google Scholar

Holtermann, P., Burchard, H. & Jennerjahn, T. (2009) Hydrodynamics of the Segara Anakan lagoon. Regional Environmental Change 9, 245–258.Google Scholar

Hutomo, M., Burhanuddin, & Hadidjaja, P. (1978) Observations on the incidence and intensity of infection of nematode larvae (Fam. Anisakidae) in certain marine fishes of waters around Panggang Island, Seribu Islands. Marine Research in Indonesia 21, 49–60.Google Scholar

Ilahude, H.D. (1980) Anisakid larvae in marine fish in Indonesia (a review). Asian Meeting on parasitic infections, .Google Scholar

Ilahude, H.D., Hadidjaja, P. & Mahfudin, B. (1978) Survey on anisakid larvae in marine fish from markets in Jakarta. SE Asian Journal of Tropical Medical Public Health 9, 48–50.Google Scholar

Jakob, E. & Palm, H.W. (2006) Parasites of commercially important fish species from the southern Java coast, Indonesia, including the distribution pattern of trypanorhynch cestodes. Verhandlungen der Gesellschaft für Ichthyologie 5, 165–191.Google Scholar

Jennerjahn, T.C., Nasir, B. & Pohlenga, I. (2009) Spatio-temporal variation of dissolved inorganic nutrients related to hydrodynamics and land use in the mangrove-fringes Segara Anakan Lagoon, Java Indonesia. Regional Environmental Change 9, 259–274.Google Scholar

Justine, J.L., Beveridge, I., Boxhall, G.A., Bray, R.A., Moravec, F., Trilles, J.P. & Whittington, I.D. (2010) An annotated list of parasites (Isopoda, Copepoda, Monogenea, Digenea, Cestoda and Nematoda) collected in groupers (Serranidae, Epinephelinae) in New Caledonia emphasizes parasite biodiversity in coral reef fish. Folia Parasitologia 57, 237–262.Google Scholar

Khan, R.A. (1990) Parasitism in marine fish after chronic exposure to petroleum hydrocarbons in the laboratory and to the Exxon Valdez oil spill. Bulletin of Environmental Contamination and Toxicology 44, 759–763.Google Scholar

Khan, R.A. & Kiceniuk, J.W. (1988) Effects of petroleum aromatic hydrocarbons on monogeneids parasitizing Atlantic cod, Gadus morhua L. Bulletin of Environmental Contamination and Toxicology 41, 94–100.Google Scholar

Kiceniuk, J.W. & Khan, R.A. (1983) Toxicology of chronic crude oil exposure: sublethal effects on aquatic organisms. pp. 425–536_in_ Nraigu, J.O. (Ed.) Aquatic toxicology. New York, John Wiley.Google Scholar

Kleinertz, S. (2010) Fish parasites as bioindicators: Environmental status of coastal marine ecosystems and a grouper mariculture farm in Indonesia. .Google Scholar

Klimpel, S. & Palm, H.W. (2011) Anisakid nematode (Ascaridoidea) life cycles and distribution: increasing zoonotic potential in the time of climate change? pp. 201–222_in_ Mehlhorn, H. (Ed.) Progress in parasitology, Parasitology Research Monographs, Google Scholar

Klimpel, S., Rückert, S., Piatkowski, U., Palm, H.W. & Hanel, R. (2006) Diet and metazoan parasites of silver scabbard fish Lepidopus caudatus from the Great Meteor Seamount (North Atlantic). Marine Ecology Progress Series 315, 249–257.Google Scholar

Kuchta, R., Scholz, T., Vlčková, R., Říha, M., Walter, T. & Palm, H.W. (2009) Revision of tapeworms (Cestoda: Bothriocephalidea) from lizardfish (Saurida: Synodontidae) from the Indo-Pacific region. Zootaxa 1977, 55–67.Google Scholar

Lafferty, K.D. (1997) Environmental parasitology: what can parasites tell us about human impacts on the environment? Parasitology Today 13, 251–255.Google Scholar

Lafferty, K.D., Allesina, S., Arim, M., Briggs, C.J., De Leo, G., Dobson, A.P., Dunne, J.A., Johnson, P.T.J., Kuris, A.M., Marcogliese, D.J., Martinez, N.D., Memmott, J., Marquet, P.A., McLaughlin, J.P., Mordecai, E.A., Pascual, M., Poulin, R. & Thieltges, D.W. (2008a) Parasites in food webs: the ultimate missing links. Ecology Letters 11, 533–546.Google Scholar

Lafferty, K.D., Shaw, J.C. & Kuris, A.M. (2008b) Reef fishes have higher parasite richness at unfished Palmyra Atoll compared to fished Kiritimati Island. Ecohealth 5, 338–345.Google Scholar

Landsberg, J.H., Blakesley, B.A., Reese, R.O., McRae, G. & Forstchen, P.R. (1998) Parasites of fish as indicators of environmental stress. Environmental Monitoring and Assessment 51, 211–232.Google Scholar

Magurran, A.E. (1988) Ecological diversity and its measurement. London, Croom Helm.Google Scholar

Marcogliese, D.J. (2003) Food webs and biodiversity: are parasites the missing link? Journal of Parasitology 89, 106–113.Google Scholar

Marcogliese, D.J. (2005) Parasites of the superorganism: are they indicators of ecosystem health? International Journal for Parasitology 35, 705–716.Google Scholar

Marcogliese, D.J. & Cone, D.K. (1997) Parasite communities as indicators of ecosystem stress. Parassitologia 39, 27–232.Google Scholar

Mattiucci, S., Paggi, L., Nascetti, G., Portes Santos, C., Costa, G., Di Beneditto, A.P., Ramos, R., Argyrou, M., Cianchi, R. & Bullini, L. (2002) Genetic markers in the study of Anisakis typica (Diesing, 1860): larval identification and genetic relationships with other species of Anisakis Dujardin, 1845 (Nematoda: Anisakidae). Systematic Parasitology 51, 159–170.Google Scholar

Mattiucci, S., Nascetti, G., Dailey, M., Webb, S.C., Barros, N.B., Cianchi, R. & Bullini, L. (2005) Evidence for a new species of Anisakis (Dujardin, 1845): morphological description and genetic relationships between congeners (Nematoda: Anisakidae). Systematic Parasitology 61, 157–171.Google Scholar

MoMAF (2009) Coral Triangle Initiative Indonesia National Plan of Actions. .Google Scholar

Moravec, F. & Justine, J.L. (2008) Some philometroid nematodes (Philometridae), including four new species of Philometra, from marine fishes off New Caledonia. Acta Parasitologica 53, 369–381.Google Scholar

Munkittrik, K.R., Van der Kraak, G.J., McMaster, M.E., Portt, D.C.B., Van den Heuval, M.R. & Servos, M.R. (1994) Survey of receiving-water environmental impacts associated with discharges from pulp mills. II. Gonad size, liver size, hepatic EROD activity and plasma sex steroid levels in white sucker. Environmental Toxicology and Chemistry 13, 1089–1101.Google Scholar

Myers, N., Mittermeier, R.A., Mittermeier, C.G., da Fronesca, G.A.B. & Kent, J. (2000) Biodiversity hotspots for conservation priorities. Nature 403, 853–858.Google Scholar

Nadler, S., D'Amelio, S., Dailey, M.D., Paggi, L., Siu, S. & Sakanari, J. (2005) Molecular phylogenetics and diagnosis of Anisakis, Pseudoterranova, and Contracaecum from the northern Pacific marine mammals. Journal of Parasitology 91, 1413–1429.Google Scholar

Nordhaus, I., Hadipudjana, F.A., Janssen, R. & Pamungkas, J. (2009) Spatio-temporal variation of macrobenthic communities in the mangrove-fringed Segara Anakan lagoon, Indonesia, affected by anthropogenic activities. Regional Environmental Change 9, 291–313.Google Scholar

Ogut, H. & Palm, H.W. (2005) Seasonal dynamics of Trichodina spp. on whiting (Merlangius merlangus) in relation to organic pollution on the Eastern Black Sea coast of Turkey. Parasitology Research 96, 149–153.Google Scholar

Overstreet, R.M. (1997) Parasitological data as monitors of environmental health. Parassitologia 39, 169–175.Google Scholar

Palm, H.W. (1999) Ecology of Pseudoterranova decipiens (Krabbe, 1878) (Nematoda: Anisakidae) from Antarctic waters. Parasitology Research 85, 638–646.Google Scholar

Palm, H.W. (2000) Trypanorhynch cestodes from Indonesian coastal waters (East Indian Ocean). Folia Parasitologica 47, 123–134.Google Scholar

Palm, H.W. (2004) The Trypanorhyncha Diesing, 1863. Bogor, PKSPL-IPB Press.Google Scholar

Palm, H.W. (2008) Surface ultrastructure of the elasmobranchia parasitizing Grillotiella exilis and Pseudonybelinia odontacantha (Trypanorhyncha, Cestoda). Zoomorphology 127, 249–258.Google Scholar

Palm, H.W. (2011) Fish parasites as biological indicators in a changing world: Can we monitor environmental impact and climate change? pp. 223–250_in_ Mehlhorn, H. (Ed.) Progress in parasitology, Parasitology Research Monographs, vol. 2. .Google Scholar

Palm, H.W. & Dobberstein, R.C. (1999) Occurrence of trichodinid ciliates (Peritricha: Urceolariidae) in the Kiel Fjord, Baltic Sea, and its possible use as a biological indicator. Parasitology Research 85, 726–732.Google Scholar

Palm, H.W. & Rückert, S. (2009) A new approach to visualize fish and ecosystem health by using parasites. Parasitology Research 105, 539–553.Google Scholar

Palm, H.W., Klimpel, S. & Walter, T. (2007) Demersal fish parasite fauna around the South Shetland Islands: high species richness and low host specificity in deep Antarctic waters. Polar Biology 30, 1513–1522.Google Scholar

Palm, H.W., Damriyasa, I.M., Linda, & Oka, I.B.M. (2008) Molecular genotyping of Anisakis Dujardin, 1845 (Nematoda: Ascaridoidea: Anisakidae) larvae from marine fish of Balinese and Javanese waters, Indonesia. Helminthologia 45, 3–12.Google Scholar

Palm, H.W., Kleinertz, S. & Rückert, S. (2011) Parasite diversity as an indicator of environmental change? An example from tropical grouper (Epinephelus fuscoguttatus) mariculture in Indonesia. Parasitology 138, 1–11.Google Scholar

Parukhin, A.M. (1970) Study of the trematode fauna of fish in the Red Sea and Gulf of Aden. Biologiya Morya, Kiev 20, 187–213.Google Scholar

Parukhin, A.M. (1976) Parasitic worms of food fishes of the Southern Seas. Kiev, Naukova Dumka.Google Scholar

Petersen, F., Palm, H.W., Möller, H. & Cuzi, M.A. (1993) Flesh parasites of fish from central Philippine waters. Diseases of Aquatic Organisms 15, 81–86.Google Scholar

Purivirojkul, W. & Areechon, N. (2008) A survey of parasitic copepods in marine fishes from the Gulf of Thailand, Chon Buri Province. Kasetsart Journal (Natural Sciences) 42, 40–48.Google Scholar

Riemann, F. (1988) Nematoda. pp. 293–301_in_ Higgins, R.P. & Thiel, H. (Eds) Introduction to the study of meiofauna. Washington, DC, Smithsonian Institution Press.Google Scholar

Rimmer, M.A., McBride, S. & Williams, K.C. (2004) Advances in grouper aquaculture. Canberra, Australian Centre for International Agricultural Research Monograph.Google Scholar

Roberts, C.M., McClean, C.J., Veron, J.E.N., Hawkins, J.P., Allen, G.R., McAllister, D.E., Mittermeier, C.G., Schueler, F.W., Spalding, M., Wells, F., Vynne, C. & Werner, T.B. (2002) Marine biodiversity hotspots and conservation priorities for tropical reefs. Science 295, 1280–1284.Google Scholar

Romimohtarto, K., Hutagalung, H. & Razak, H. (1991) Water quality of Segara Anakan-Cilacap (Central Java, Indonesia) with a note on lagoon fishery. pp. 131–141_in_ Chou, L.M., Chua, T.E., Khoo, H.W., Lim, P.E., Paw, J.N., Silvestre, G.T., Valencia, M.J., White, A.T. & Wong, P.K. (Eds) Towards an integrated management of tropical coastal resources. International Center for Living Aquatic Resources Management Conference Proceedings, vol. 22, .Google Scholar

Rückert, S. (2006) Marine fish parasites in Indonesia: state of infestation and importance for grouper mariculture. .Google Scholar

Rückert, S., Palm, H.W. & Klimpel, S. (2008) Parasite fauna of seabass (Lates calcarifer) under mariculture conditions in Lampung Bay, Indonesia. Journal of Applied Ichthyology 25, 321–327.Google Scholar

Rückert, S., Hagen, W., Yuniar, A.T. & Palm, H.W. (2009a) Metazoan parasites of Segara Anakan Lagoon, Indonesia, and their potential use as biological indicators. Regional Environmental Change 9, 315–328.Google Scholar

Rückert, S., Klimpel, S., Mehlhorn, H. & Palm, H.W. (2009b) Transmission of fish parasites into grouper mariculture (Serranidae: Epinephelus coioides (Hamilton, 1822)) in Lampung Bay, Indonesia. Parasitology Research 104, 523–532.Google Scholar

Rückert, S., Klimpel, S. & Palm, H.W. (2010) Parasites of cultured and wild brown-marbled grouper Epinephelus fuscoguttatus (Forsskål, 1775) in Lampung Bay, Indonesia. Aquaculture Research 41, 1158–1169.CrossRefGoogle Scholar

Saoud, M.F.A., Ramadan, M.M. & Kawari, K.S.R.A. (1986) Helminth parasites of fishes from the Arabian Gulf. 2. The digenean trematode genera Hamacraedium Linton, 1919 and Cainocraedium Nicol, 1909. Qatar University Science Bulletin 6, 231–245.Google Scholar

Sasal, P., Mouillot, D., Fichez, R., Chifflet, S. & Kulbicki, M. (2007) The use of fish parasites as biological indicators of anthropogenic influences in coral-reef lagoons: a case study of Apogonidae parasites in New-Caledonia. Marine Pollution Bulletin 54, 1697–1706.Google Scholar

Sey, O., Nahhas, F.M., Uch, S. & Vang, C. (2003) Digenetic trematodes from marine fishes off the coast of Kuwait, Arabian Gulf: Fellodistomidae and some smaller families, new host geographic records. Acta Zoologica Academiae Scientiarum Hungaricae 49, 179–200.Google Scholar

Shih, H.H. (2004) Parasitic helminth fauna of the cutlass fish, Trichiurus lepturus L., and the differentiation of four anisakid nematode third-stage larvae by nuclear ribosomal DNA sequences. Parasitology Research 93, 188–195.Google Scholar

Sures, B. & Siddall, R. (2003) Pomphorhynchus laevis (Palaeacanthocephala) in the intestine of chub (Leuciscus cephalus) as an indicator of metal pollution. International Journal for Parasitology 33, 65–70.Google Scholar

Theisen, S. (2009) Fischparasiten von der Südküste Javas, Indonesien. .Google Scholar

Thompson, J.D., Higgins, D.G. & Gibson, D.J. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22, 4673–4680.Google Scholar

Verweyen, L., Klimpel, K. & Palm, H.W. (2011) Molecular phylogeny of the Acanthocephala (Class Palaeacanthocephala) with a paraphyletic assemblage of the orders Polymorphida and Echinorhynchida. PLoS ONE 6 (12), e28285. .Google Scholar

Vidal-Martínez, V.M., Aguirre-Macedo, M.L., Vivas-Rodríguez, C.M. & Moravec, F. (1998) The macroparasite communities of the red grouper, Epinephelus morio, from the Yucatan Peninsula, Mexico. .Google Scholar

Vidal-Martínez, V.M., Pech, D., Sures, B., Purucker, S.T. & Poulin, R. (2010) Can parasites really reveal environmental impact? Trends in Parasitology 26, 44–51.Google Scholar

White, A.T., Marosubroto, P. & Sadorra, M.S.M. (1989) The coastal environment profile of Segara Anakan Cilacap, South Java, Indonesia. .Google Scholar

Williams, H.H. & MacKenzie, K. (2003) Marine parasites as pollution indicators: an update. Parasitology 126, 27–41.CrossRefGoogle ScholarPubMed

Yuniar, A. (2005) Parasites of marine fish from Segara Anakan, Java, Indonesia and their potential use as biological indicators. .Google Scholar

Yuniar, A., Palm, H.W. & Walter, T. (2007) Crustacean fish parasites from Segara Anakan Lagoon, Java Indonesia. Parasitology Research 100, 1193–1204.Google Scholar

Zhu, X., Gasser, R.B., Podolska, M. & Chilton, N.B. (1998) Characterisation of anisakid nematodes with zoonotic potential by nuclear ribosomal DNA sequences. International Journal of Parasitology 28, 1911–1921.Google Scholar

Zhu, X., D'Amelio, S., Paggi, L. & Gasser, R.B. (2000a) Assessing sequence variation in the internal transcribed spacers of ribosomal DNA within and among members of the Contracaecum osculatum complex (Nematoda: Ascaridoidea: Anisakidae). Parasitology Research 86, 677–683.Google Scholar

Zhu, X., Gasser, R.B., Jacobs, D.E., Hung, G.C. & Chilton, N.B. (2000b) Relationship among some ascaridoid nematodes based on ribosomal DNA sequence data. Parasitology Research 86, 738–744.Google Scholar