The complete mitochondrial genome of Orthocoelium streptocoelium (Digenea: Paramphistomidae) for comparison with other digeneans | Journal of Helminthology | Cambridge Core (original) (raw)

Abstract

Orthocoelium streptocoelium is a common paramphistome species parasitizing the rumen and/or reticulum of small ruminants, leading to significant losses. This study first determined the complete mitochondrial (mt) genome of O. streptocoelium. The complete mt genome of O. streptocoelium was amplified, sequenced, assembled, analysed and then compared with those of other digeneans. The entire mt genome of O. streptocoelium is 13,800 bp in length, which is smaller than those of other digeneans except for Opisthorchis viverrini. This mt genome contains 12 protein-coding genes, 22 transfer RNA genes, two ribosomal RNA genes and two non-coding regions. The arrangement of the O. streptocoelium mt genome is the same as those of other digeneans except for Schistosoma haematobium and Schistosoma spindale. Phylogenetic analyses based on concatenated amino acid sequences of the 12 protein-coding genes representing 16 digeneans were conducted to assess the relationship of O. streptocoelium with other digeneans. The result indicated that O. streptocoelium is closely related to Paramphistomum cervi and Fischoederius elongates, which is in accordance with their relationships by taxonomy. This complete mt genome of O. streptocoelium enriched the mitochondrial genome data of paramphistomes and provided important molecular markers for diagnostics and studies of population variation, epidemiology, ecology and evolution of O. streptocoelium and other digeneans.

References

Anderson, G.R. (1998) Inference of phylogeny and taxonomy within the Didymozoidae (Digenea) from the second internal transcribed spacer (ITS2) of ribosomal DNA. Systematic Parasitology 41, 87–94.CrossRefGoogle Scholar

Bott, N.J., Campbell, B.E., Beveridge, I., Chilton, N.B., Rees, D., Hunt, P.W. & Gasser, R.B. (2009) A combined microscopic–molecular method for the diagnosis of strongylid infections in sheep. International Journal for Parasitology 11, 1277–1287.CrossRefGoogle Scholar

Gasser, R.B., Hu, M., Chilton, N.B., Campbell, B.E., Jex, A.J., Otranto, D., Cafarchia, C., Beveridge, I. & Zhu, X. (2006) Single-strand conformation polymorphism (SSCP) for the analysis of genetic variation. Nature Protocols 1, 3121–3128.Google Scholar

Gasser, R.B., Jabbar, A., Mohandas, N., Hoglund, J., Hall, R.S., Littlewood, D.T. & Jex, A.R. (2012) Assessment of the genetic relationship between Dictyocaulus species from Bostaurus and Cervus elaphus using complete mitochondrial genomic datasets. Parasites & Vectors 5, 241.Google Scholar

Ghatani, S., Shylla, J.A., Roy, B. & Tandon, V. (2014) Multilocus sequence evaluation for differentiating species of the trematode Family Gastrothylacidae, with a note on the utility of mitochondrial COI motifs in species identification. Gene 548, 277–284.Google Scholar

Hanna, R.E.B., Williamson, D.S., Mattison, R.G. & Nizami, W.A. (1988) Seasonal reproduction in Paramphistomum epiclitum and Gastrothylax crumenifer, rumen amphistomes of the Indian water buffalo and comparison with biliary paramphistome Gigantocotyle explanatum . International Journal for Parasitology 18, 513–521.Google Scholar

Hu, M., Jex, A.R., Campbell, B.E. & Gasser, R.B. (2007) Long PCR amplification of the entire mitochondrial genome from individual helminths for direct sequencing. Nature Protocols 2, 2339–2344.Google Scholar

Huffman, J.E. & Fried, B. (1990) Echinostoma and echinostomiasis. Advances in Parasitology 29, 215–269.Google Scholar

Le, T.H., Blair, D., Agatsuma, T., Humair, P.F., Campbell, N.J., Iwagami, M., Littlewood, D.T., Peacock, B., Johnston, D.A. & Bartley, J. (2000) Phylogenies inferred from mitochondrial gene orders – a cautionary tale from the parasitic flatworms. Molecular Biology and Evolution 17, 1123–1125.Google Scholar

Le, T.H., Blair, D. & McManus, D.P. (2001) Complete DNA sequence and gene organization of the mitochondrial genome of the liverfluke, _Fasciola hepatic_a L. (Platyhelminthes; Trematoda). Parasitology 123, 609–621.Google Scholar

Lee, D., Choe, S., Park, H., Jeon, H.K., Chai, J.Y., Sohn, W.M., Yong, T.S., Min, D.Y., Rim, H.J. & Eom, K.S. (2013) Complete mitochondrial genome of Haplorchis taichui and comparative analysis with other trematodes. Korean Journal of Parasitology 51, 719–726.Google Scholar

Li, X.R. (2011) Color atlas of animal parasitosis. 2nd edn. Beijing, China Agriculture Press.Google Scholar

Littlewood, D.T., Lockyer, A.E., Webster, B.L., Johnston, D.A. & Le, T.H. (2006) The complete mitochondrial genomes of Schistosoma haematobium and Schistosoma spindale and the evolutionary history of mitochondrial genome changes among parasitic flatworms. Molecular Phylogenetics and Evolution 39, 452–467.Google Scholar

Liu, G.H., Wang, Y., Song, H.Q., Li, M.W., Ai, L., Yu, X.L. & Zhu, X.Q. (2013) Characterization of the complete mitochondrial genome of Spirocerca lupi: sequence, gene organization and phylogenetic implications. Parasites & Vectors 6, 45.Google Scholar

Liu, G.H., Yan, H.B., Otranto, D., Wang, X.Y., Zhao, G.H., Jia, W.Z. & Zhu, X.Q. (2014a) Dicrocoelium chinensis and Dicrocoelium dendriticum (Trematoda: Digenea) are distinct lancet fluke species based on mitochondrial and nuclear ribosomal DNA sequences. Molecular Phylogenetics and Evolution 79, 325–331.Google Scholar

Liu, G.H., Gasser, R.B., Young, N.D., Song, H.Q., Ai, L. & Zhu, X.Q. (2014b) Complete mitochondrial genomes of the ‘intermediate form’ of Fasciola and Fasciola gigantica, and their comparison with F. hepatica . Parasites & Vectors 7, 150.Google Scholar

Nakao, M., Sako, Y. & Ito, A. (2003) The mitochondrial genome of the tapeworm Taenia solium: a finding of the abbreviated stop codon U. Journal of Parasitology 89, 633–635.Google Scholar

Ramesh, A., Small, S.T., Kloos, Z.A., Kazura, J.W., Nutman, T.B., Serre, D. & Zimmerman, P.A. (2012) The complete mitochondrial genome sequence of the filarial nematode Wuchereria bancrofti from three geographic isolates provides evidence of complex demographic history. Molecular and Biochemical Parasitology 183, 32–41.CrossRefGoogle ScholarPubMed

Sharma, P.N. & Hanna, R.E. (1988) Ultrastructure and cytochemistry of the tegument of Orthocoelium scoliocoelium and Paramphistomum cervi (Trematoda: Digenea). Journal of Helminthology 62, 331–343.CrossRefGoogle ScholarPubMed

Shekhovtsov, S.V., Katokhin, A.V., Kolchanov, N.A. & Mordvinov, V.A. (2010) The complete mitochondrial genomes of the liver flukes Opisthorchis felineus and Clonorchis sinensis (Trematoda). Parasitology International 59, 100–103.CrossRefGoogle ScholarPubMed

Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. & Kumar, S. (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28, 2731–2739.CrossRefGoogle ScholarPubMed

Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F. & Higgins, D.G. (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 25, 4876–4882.Google Scholar

Waeschenbach, A., Webster, B.L. & Littlewood, D.T. (2012) Adding resolution to ordinal level relationships of tapeworm (Platyhelminthes: Cestoda) with large fragments of mtDNA. Molecular Phylogenetics and Evolution 63, 834–847.Google Scholar

Wang, G.L. (2013) Laboratory diagnostic techniques of parasites. Feeding Livestock 3, 39–43.Google Scholar

Yamaguti, S. (1975) A synoptical review of life histories of digenetic trematodes of vertebrates. Tokyo, Keigaku Publishing.Google Scholar

Yan, H.B., Wang, X.Y., Lou, Z.Z., Li, L., Blair, D., Yin, H., Cai, J.Z., Dai, X.L., Lei, M.T. & Zhu, X.Q. (2013) The mitochondrial genome of Paramphistomum cervi (Digenea), the first representative for the family Paramphistomidae. Plos One 8, e71300.Google Scholar

Yang, X., Zhao, Y., Wang, L., Feng, H., Tan, L., Lei, W., Zhao, P., Hu, M. & Fang, R. (2015a) Analysis of the complete Fischoederius elongatus (Paramphistomidae, Trematoda) mitochondrial genome. Parasites & Vectors 8, 297.Google Scholar

Yang, X., Gasser, R.B., Koehler, A.V., Wang, L., Zhu, K., Chen, L., Feng, H., Hu, M. & Fang, R. (2015b) Mitochondrial genome of Hypoderaeum conoideum – comparison with selected trematodes. Parasites & Vectors 8, 97.Google Scholar