Energy metabolism and its regulation in the adult liver fluke Fasciola hepatica | Parasitology | Cambridge Core (original) (raw)

References

Abrahams, S. L., Northup, J. K. & Mansour, T. E. (1976). Adenosine cyclic 3',5'-monophosphate in the liver fluke, Fasciola hepatica. I. Activation of adenylate cyclase by 5-hydroxytryptamine. Molecular Pharmacology 12, 49–58.Google ScholarPubMed

Andreini, G. C., Beretta, C., Faustini, R. & Gallina, G. (1970). Spectrofluorometric and chromatographic characterisation of a butanol extract from Fasciola hepatica. Experientia 26, 166–7.CrossRefGoogle ScholarPubMed

Ashton, W. I. G., Boardman, P. L., D'Sa, C. J., Everall, P. H. & Houghton, A. W. J. (1970). Human fascioliasis in Shropshire. British Medical Journal 3, 500–2.CrossRefGoogle ScholarPubMed

Barrett, J. (1975). The occurrence and intracellular distribution of nucleoside diphosphate kinase in parasitic helminths. Journal of Parasitology 61, 545–6.CrossRefGoogle Scholar

Barrett, J. (1978). Activation of succinate dehydrogenase from adult Fasciola hepatica (Trematoda). Parasitology 76, 269–75.CrossRefGoogle ScholarPubMed

Barrett, J. (1981). The Biochemistry of Parasitic Helminths. London and Basingstoke: Macmillan.CrossRefGoogle Scholar

Barrett, J. & Beis, I. (1973). Nicotinamide and adenosine nucleotide levels in Ascaris lumbricoides, Hymenolepis diminuta and Fasciola hepatica. International Journal for Parasitology 3, 271–3.CrossRefGoogle ScholarPubMed

Barrett, J., Coles, G. C. & Simpkin, K. G. (1978). Pathways of acetate and propionate production in adult Fasciola hepatica. International Journal for Parasitology 8, 117–23.CrossRefGoogle ScholarPubMed

Barrett, J. & Körting, W. (1976). Studies on beta-oxidation in the adult liver fluke, Fasciola hepatica. International Journal for Parasitology 6, 155–7.CrossRefGoogle ScholarPubMed

Barrett, J. & Lloyd, G. M. (1981). A novel phosphagen phosphotransferase in the plerocercoids of Schistocephalus solidus (Cestoda: Pseudophyllidea). Parasitology 82, 11–16.CrossRefGoogle ScholarPubMed

Beddok, R. A. & Mansour, T. E. (1979). Antagonism of serotonin-activated adenylate cyclase in the liver fluke, Fasciola hepatica by levorphanol and dextrorphan. Biochemical Pharmacology 28, 3689–92.CrossRefGoogle ScholarPubMed

Behm, C. A. & Bryant, C. (1975). Studies of regulatory metabolism in Moniezia expansa: the role of phosphofructokinase (with a note on pyruvate kinase). International Journal for Parasitology 5, 339–46.CrossRefGoogle ScholarPubMed

Behm, C. A. & Bryant, C. (1980). Regulatory properties of a partially purified preparation of pyruvate kinase from Fasciola hepatica. International Journal for Parasitology 10, 107–15.CrossRefGoogle ScholarPubMed

Behm, C. A. & Bryant, C. (1982). Phosphoenolpyruvate carboxykinase from Fasciola hepatica. International Journal for Parasitology 12, 271–8.CrossRefGoogle ScholarPubMed

Beis, I. & Barrett, J. (1979). The contents of adenine nucleotides and glycolytic and tricarboxylic acid cycle intermediates in activated and non-activated plerocercoids of Schistocephalus solidus (Cestoda: Pseudophyllidea). International Journal for Parasitology 9, 465–71.CrossRefGoogle Scholar

Beis, I. & Theophilidis, G. (1982). Phosphofructokinase in the plerocercoids of Schistocephalus solidus (Cestoda: Pseudophyllidea). International Journal for Parasitology 12, 389–93.CrossRefGoogle ScholarPubMed

Bennett, J. L. & Gianutsos, G. (1977). Distribution of catecholamines in immature Fasciola hepatica: a histochemical and biochemical study. International Journal for Parasitology 7, 221–5.CrossRefGoogle ScholarPubMed

Beretta, C. & Locatelli, A. (1968). Inhibitory activity of 8-β-carbobenzyl oxyaminomethyl 1,6-dimethyl 10-α-ergoline towards stimulant effects by 5-hydroxytryptamine and amphetamine on liver fluke. Journal of Pharmacy and Pharmacology 20, 744–8.CrossRefGoogle Scholar

Boray, J. C. (1969). Experimental fascioliasis in Australia. Advances in Parasitology 7, 96–210.Google ScholarPubMed

Bryant, C. & Smith, M. J. H. (1963). Some aspects of intermediary metabolism in Fasciola hepatica and Polycelis nigra. Comparative Biochemistry and Physiology 9, 189–94.CrossRefGoogle ScholarPubMed

Bryant, C., Smith, M. J. H. & Williams, J. P. G. (1963). Effects of some anthelmintic drugs on the metabolism of radioactive glucose by the liver fluke, Fasciola hepatica L. Experimental Parasitology 14, 218–20.CrossRefGoogle Scholar

Bryant, C. & Williams, J. P. G. (1962). Some aspects of the metabolism of the liver fluke, Fasciola hepatica L. Experimental Parasitology 12, 372–6.CrossRefGoogle Scholar

Buc, H., Demaugre, F. & Le Roux, J. P. (1978). The kinetic effects of oxalate on liver and erythrocyte pyruvate kinases. Biochemical and Biophysical Research Communications 85, 774–9.CrossRefGoogle ScholarPubMed

Bueding, E. & Fisher, J. (1966). Factors affecting the inhibition of phosphofructokinase activity of Schistosoma mansoni by trivalent organic antimonials. Biochemical Pharmacology 15, 1197–211.CrossRefGoogle ScholarPubMed

Buist, R. A. & Schofield, P. J. (1971). Some aspects of the glucose metabolism of Fasciola hepatica. International Journal of Biochemistry 2, 377–83.CrossRefGoogle Scholar

Burren, C. H., Ehrlich, I. & Johnson, P. (1967). Excretion of lipids by the liver fluke (Fasciola hepatica L). Lipids 2, 353–6.CrossRefGoogle ScholarPubMed

Cheah, K. S. & Prichard, R. K. (1975). The electron transport systems of Fasciola hepatica mitochondria. International Journal for Parasitology 5, 183–6.CrossRefGoogle ScholarPubMed

Chen, C. & Awapara, J. (1969). Intracellular distribution of enzymes catalysing succinate production from glucose in ‘Rangia’ mantle. Comparative Biochemistry and Physiology 30, 727.CrossRefGoogle Scholar

Chou, T. C., Bennett, J. & Bueding, E. (1972). Occurrence and concentrations of biogenic amines in trematodes. Journal of Parasitology 58, 1098–102.CrossRefGoogle ScholarPubMed

Coles, G. C. (1975). Fluke Biochemistry–Fasciola and Schistosoma. Helminthological Abstracts 44 A, 147–62.Google Scholar

Coles, G. C., Simpkin, K. G. & Barrett, J. (1980). Fasciola hepatica: energy sources and metabolism. Experimental Parasitology 49, 122–7.CrossRefGoogle ScholarPubMed

Cori, C. F. (1942). In A Symposium on Respiratory Enzymes. Madison, Wisc: University of Wisconsin Press.Google Scholar

Cornish, R. A., Behm, C. A., Butler, R. W. & Bryant, C. (1977). The in vivo effects of rafoxanide on the energy metabolism of Fasciola hepatica. International Journal for Parasitology 7, 217–20.CrossRefGoogle ScholarPubMed

Cornish, R. A. & Bryant, C. (1976 a). Changes in energy metabolism due to anthelmintics in Fasciola hepatica. International Journal for Parasitology 6, 393–8.CrossRefGoogle ScholarPubMed

Cornish, R. A. & Bryant, C. (1976 b). The metabolic integrity of Fasciola hepatica during in vitro maintenance. International Journal for Parasitology 6, 387–92.CrossRefGoogle ScholarPubMed

Dawes, B. (1963). Some observations on Fasciola hepatica L. during feeding operations in the hepatic parenchyma of the mouse, with a note on liver damage in this host. Parasitology 53, 135–43.CrossRefGoogle Scholar

Dawes, B. & Hughes, D. L. (1964). Fascioliasis: the invasive stages of Fasciola hepatica in mammalian hosts. Advances in Parasitology 2, 97–168.CrossRefGoogle ScholarPubMed

Du, Z–H. & Mansour, T. E. (1982). Effect of adenylate cyclase activators and Mg2+ on the binding and the electron spin resonance spectra of N- methylmaleimide nitroxide in membrane particles from the liver fluke, Fasciola hepatica. Biochimica et Biophysica Acta 687, 257–64.CrossRefGoogle Scholar

Gentleman, S., Abrahams, S. L. & Mansour, T. E. (1976). Adenosine cyclic 3',5'-monophosphate in the liver fluke, Fasciola hepatica. II. Activation of protein kinase by 5-hydroxytryptamine. Molecular Pharmacology 12, 59–68.Google ScholarPubMed

Gianutsos, G. & Bennett, J. L. (1977). The regional distribution of dopamine and norepinephrine in Schistosoma mansoni and Fasciola hepatica. Comparative Biochemistry and Physiology 58 C, 157–9.Google ScholarPubMed

Gilles, R. (1970). Intermediary metabolism and energy production in some invertebrates. Archive Internationale de Physiologie et de Biochimie 78, 313–26.CrossRefGoogle ScholarPubMed

Green, N. M. (1963). Avidin I: the use of [14C] biotin for kinetic studies and for assay. Biochemistry Journal 89, 585–91.CrossRefGoogle ScholarPubMed

Hammen, C. S. (1969). Metabolism of the oyster, Crassostrea virginica. American Zoologist 9, 309–18.CrossRefGoogle Scholar

Hardman, E. W., Jones, R. L. H. & Davies, A. H. (1970). Fascioliasis–a large outbreak. British Medical Journal 3, 502–5.CrossRefGoogle ScholarPubMed

Harnisch, O. (1932). Untersuchungen über den Gasmechel von Fasciola hepatica. Zeitschrift für vergleichende Physiologie 17, 365–86.CrossRefGoogle Scholar

Higashi, G. I., Kreiner, P. W., Keirns, J. J. & Bitensky, M. W. (1973). Adenosine 3',5' cyclic monophosphate in Schistosoma mansoni. Life Sciences 13, 1211–20.CrossRefGoogle Scholar

Hines, W. J. W. (1969). An in vitro effect of insulin on glycogen levels in the common liver fluke, Fasciola hepatica (Linnaeus, 1758). Comparative Biochemistry and Physiology 28, 1443–7.CrossRefGoogle Scholar

Hochachka, P. W., Fields, J. & Mustafa, T. (1973). Animal life without oxygen: basic biochemical mechanisms. American Zoologist 13, 543–55.CrossRefGoogle Scholar

Hofmann, E. (1976). The significance of phosphofructokinase to the regulation of carbohydrate metabolism. Reviews of Physiology, Biochemistry and Pharmacology 75, 1–68.CrossRefGoogle Scholar

Humiczewska, M. (1975 a). Oxidative enzymes in the development of Fasciola hepatica L. II. Dehydrogenase activities of the miracidium. Folia Histochemica et Cytochemica 13, 37–50.Google ScholarPubMed

Humiczewska, M. (1975 b). Oxidative enzymes in the development of Fasciola hepatica L. V. Activity of oxidases and dehydrogenases in the cercariae and metacercariae. Folia Histochemica et Cytochemica 13, 213–30.Google Scholar

Humiczewska, M. (1975 c). Oxidative enzymes in the development of Fasciola hepatica L. III. The activities of oxidases and dehydrogenases in the sporocyst. Folia Histochemica et Cytochemica 13, 51–60.Google ScholarPubMed

Isseroff, H. & Read, C. P. (1968). Does insulin affect carbohydrate metabolism in Fasciola hepatica? Comparative Biochemistry and Physiology 24, 1069–72.CrossRefGoogle ScholarPubMed

Isseroff, H. & Read, C. P. (1969). Studies on membrane transport. VI. Absorption of amino acids by fascioliid trematodes. Comparative Biochemistry and Physiology 30, 1153–9.CrossRefGoogle ScholarPubMed

Isseroff, H. & Read, C. P. (1974). Studies on membrane transport. VIII. Absorption of monosaccharides by Fasciola hepatica. Comparative Biochemistry and Physiology 47 A, 141–52.CrossRefGoogle Scholar

Isseroff, H., Tunis, M. & Read, C. P. (1972). Changes in amino acids of bile in Fasciola hepatica infections. Comparative Biochemistry and Physiology 41 B, 157–63.Google ScholarPubMed

Isseroff, H. & Walczak, I. M. (1971). Absorption of acetate, pyruvate and certain Kreb's cycle intermediates by Fasciola hepatica. Comparative Biochemistry and Physiology 39 B, 1017–21.Google ScholarPubMed

Jennings, F. W., Mulligan, W. & Urquart, G. M. (1955). Some isotopic studies on the blood loss associated with Fasciola hepatica infections in rabbits. Transactions of the Royal Society for Tropical Medicine and Hygiene 49, 305.Google Scholar

Kane, H. J., Behm, C. A. & Bryant, C. (1980). Metabolic studies on the new fasciolicidal drug closantel. Molecular and Biochemical Parasitology 1, 347–55.CrossRefGoogle ScholarPubMed

Kendall, S. B. & Parfitt, J. W. (1962). The chemotherapy of fascioliasis. British Veterinary Journal 118, 1–10.CrossRefGoogle Scholar

Köhler, P. & Bachmann, R. (1979). Cited in: The function of mitochondrial enzymes in parasitic helminths. In Trends in Enzymology (ed. Vitale, L. J. and Simeon, V.), FEBS 61, 243–56, Industrial and Clinical Enzymology. Oxford: Pergamon, 1980.Google Scholar

Köhler, P., Bryant, C. & Behm, C. A. (1978). ATP synthesis in a succinate decarboxylase system from Fasciola hepatica mitochondria. International Journal for Parasitology 8, 399–404.CrossRefGoogle Scholar

Köhler, P. & Hanselman, K. (1973). Intermediary metabolism in Dicrocoelium dendriticum (Trematoda). Comparative Biochemistry and Physiology 45 B, 825–45.Google ScholarPubMed

Kuo, K. F. & Greengard, P. (1970). Cyclic nucleotide-dependent protein kinases. VI. Isolation and partial purification of a protein kinase activated by guanosine 3′,5′ monophosphate. Journal of Biological Chemistry 245, 2493–8.CrossRefGoogle ScholarPubMed

Kurelec, B. (1964 a). Urea synthesis in the liver fluke (Fasciola hepatica L). I. Krebs-Henseleit ornithine cycle enzymes. Veterinary Archives 34, 193–201.Google Scholar

Kurelec, B. (1964 b). Urea synthesis in the liver fluke (Fasciola hepatica L). II. Functional link of the urea cycle with the tricarboxylic acid cycle. Veterinary Archives 34, 221–7.Google Scholar

Kurelec, B. (1975). Molecular biology of helminth parasites. International Journal of Biochemistry 6, 375–86.CrossRefGoogle Scholar

Kurelec, B. & Rijavec, M. (1966). Amino acid pool of the liver fluke (Fasciola hepatica L.). Comparative Biochemistry and Physiology 19, 525–31.CrossRefGoogle ScholarPubMed

Lahoud, H., Prichard, R. K., McManus, W. R., Schofield, P. J. (1971 a). Volatile fatty acid production by adult Fasciola hepatica. Comparative Biochemistry and Physiology 38 B, 379–91.Google Scholar

Lahoud, H., Prichard, R. K., McManus, W. R. & Schofield, P. J. (1971 b). The dissimilation of leucine, isoleucine, and valine to volatile fatty acids by adult Fasciola hepatica. International Journal for Parasitology 1, 223–33.CrossRefGoogle ScholarPubMed

Landsperger, W. J. & Harris, B. G. (1976). NAD+ malic enzyme: regulatory properties of the enzyme from Ascaris suum. Journal of Biological Chemistry 251, 3599–602.CrossRefGoogle ScholarPubMed

Landsperger, W. J., Fodge, D. W. & Harris, B. J. (1978). Genetic and isotope partitioning of the NAD+ malic enzyme from Ascaris suum. Journal of Biological Chemistry 253, 1868–73.Google Scholar

Lee, R. M. & Vasey, H. M. (1970). Pyruvate kinase activity in the liver fluke Fasciola hepatica L. International Journal of Biochemistry 1, 274–80.CrossRefGoogle Scholar

deLey, J. & Vercruysse, R. (1955). Glucose-6-phosphate and gluconate-6-phosphate dehydrogenase in worms. Biochimica et Biophysica Acta 16, 615–16.CrossRefGoogle Scholar

Lloyd, G. M. (1979). PEP metabolism in the liver fluke Fasciola hepatica. Parasitology 79, xlv–xlvi.Google Scholar

Lloyd, G. M. (1983 a). Kinetic properties of phosphofructokinase (and fructose bisphosphatase) of the liver fluke Fasciola hepatica. International Journal for Parasitology 13, 475–81.CrossRefGoogle ScholarPubMed

Lloyd, G. M. (1983 b). A fructose bisphosphate activated lactate dehydrogenase in the liver fluke, Fasciola hepatica. Molecular and Biochemical Parasitology 7, 237–246.CrossRefGoogle ScholarPubMed

Lloyd, G. M. & Barrett, J. (1983 a). Fasciola hepatica: carbohydrate metabolism of the adult. Experimental Parasitology 56, 81–8.CrossRefGoogle ScholarPubMed

Lloyd, G. M. & Barrett, J. (1983 b). Fasciola hepatica: inhibition of phosphoenolpyruvate carboxykinase and end product formation by quinolinic acid and 3-mercaptopicolinic acid. Experimental Parasitology 56, 259–65.CrossRefGoogle ScholarPubMed

Mansour, T. E. (1957). The effect of lysergic acid diethylamide, 5-hydroxytryptamine and related compounds on the liver fluke Fasciola hepatica. British Journal of Pharmacology and Chemotherapy 12, 406–9.CrossRefGoogle ScholarPubMed

Mansour, T. E. (1959 a). Studies on the carbohydrate metabolism of the liver fluke Fasciola hepatica. Biochimica et Biophysica Acta, 34, 456–64.CrossRefGoogle ScholarPubMed

Mansour, T. E. (1959 b). The effect of serotonin and related compounds on the carbohydrate metabolism of the liver fluke Fasciola hepatica. Journal of Pharmacological and Experimental Therapeutics 126, 212–16.Google ScholarPubMed

Mansour, T. E. (1962). Effect of serotonin on glycolysis in homogenates from the liver fluke Fasciola hepatica. Journal of Pharmacological and Experimental Therapeutics 135, 94–101.Google ScholarPubMed

Mansour, T. E. (1964). The pharmacology and biochemistry of parasitic helminths. Advances in Pharmacology 3, 129–65.CrossRefGoogle ScholarPubMed

Mansour, T. E., Lago, A. D. & Hawkins, J. L. (1957). Occurrence and possible role of serotonin in Fasciola hepatica. Federation Proceedings 16, 319.Google Scholar

Mansour, T. E. & Lago, A. D. (1958). Biochemical effects of serotonin on Fasciola hepatica. Journal of Pharmacological and Experimental Therapeutics 122, 48 A.Google Scholar

Mansour, T. E., Sutherland, E. W., Rall, T. W. & Bueding, E. (1960). The effect of serotonin (5-hydroxytryptamine) on the formation of adenosine 3′,5′ phosphate by tissue particles from the liver fluke Fasciola hepatica. Journal of Biological Chemistry 235, 466–70.CrossRefGoogle Scholar

Mansour, T. E., Le Rouge, N. A. & Mansour, J. M. (1961). Effects of serotonin and of cyclic 3–5 AMP on phosphofructokinase from the liver fluke Fasciola hepatica. Federation Proceedings 20, 226.Google Scholar

Mansour, T. E. & Mansour, J. M. (1962). Effects of serotonin (5-hydroxytryptamine) and adenosine 3′,5′ phosphate on phosphofructokinase from the liver fluke Fasciola hepatica. Journal of Biological Chemistry 237, 629–34.CrossRefGoogle Scholar

Mansour, T. E. & Stone, D. B. (1970). Biochemical effects of lysergic acid diethylamide on the liver fluke Fasciola hepatica. Biochemical Pharmacology 19, 1137–46.CrossRefGoogle Scholar

Mansour, T. E. & Mansour, J. M. (1977). Phosphodiesterase in the liver fluke Fasciola hepatica. Biochemical Pharmacology 26, 2325–30.CrossRefGoogle ScholarPubMed

Mansour, T. E. & Mansour, J. M. (1979). Effect of some phosphodiesterase inhibitors on adenylate cyclase from the liver fluke Fasciola hepatica. Biochemical Pharmacology 28, 1943–6.CrossRefGoogle ScholarPubMed

Mansour, T. E., Morris, P. G., Feeney, J. & Roberts, G. C. K. (1982). A31P-NMR study of the intact liver fluke Fasciola hepatica. Biochimica et Biophysica Acta 721, 336–40.CrossRefGoogle ScholarPubMed

Mansour, J. M., Ehrlich, A. & Mansour, T. E. (1983). The dual effects of aluminium as activator and inhibitor of adenylate cyclase in the liver fluke Fasciola hepatica. Biochemical and Biophysical Research Communications 116, 911–18.CrossRefGoogle Scholar

Moczon, T. (1983). Oxidoreductases and phosphatases in miracidia of Fasciola hepatica as revealed by histochemical methods. Acta Parasitologica Polonica 28, 267–72.Google Scholar

Monod, J., Changeux, J–P. & Jacob, F. (1963). Allosteric proteins and cellular control processes. Journal of Molecular Biology 6, 306–29.CrossRefGoogle Scholar

Moore, M. N. & Halton, D. W. (1975). A histochemical study of the redia and cercariae of Fasciola hepatica. Zeitschrift für Parasitenkunde 47, 45–54.CrossRefGoogle ScholarPubMed

Moss, G. D. (1970). The excretory metabolism of the endoparasitic digenean Fasciola hepatica and its relationship to its respiratory metabolism. Parasitology 60, 1–9.CrossRefGoogle ScholarPubMed

Newsholme, E. A. & Crabtree, B. (1970). The role of fructose-1,6-diphosphatase in the regulation of glycolysis in skeletal muscle. FEBS Letters 7, 195.CrossRefGoogle ScholarPubMed

Newsholme, E. A. & Crabtree, B. (1973). Metabolic aspects of enzyme activity regulation. Symposium of the Society for Experimental Biology 27, 429–60.Google ScholarPubMed

Newsholme, E. A. & Start, C. (1976). Regulation in Metabolism. London and New York: Wiley.Google ScholarPubMed

Northup, J. K. & Mansour, T. E. (1978 a). Adenylate cyclase from Fasciola hepatica: 2. Role of guanine nucleotides in coupling adenylate cyclase and serotonin receptors. Molecular Pharmacology 14, 820–33.Google ScholarPubMed

Northup, J. K. & Mansour, T. E. (1978 b). Adenylate cyclase from Fasciola hepatica. 1. Ligand specificity of adenylate cyclase-coupled serotonin receptors. Molecular Pharmacology 14, 804–19.Google ScholarPubMed

Northup, J. K., Renart, M. F., Grove, J. R. & Mansour, T. E. (1979). Serotonin-activated adenylate cyclase from Fasciola hepatica. Journal of Biological Chemistry 254, 11861–7.CrossRefGoogle ScholarPubMed

Oldenborg, V., Van Vugt, F. & Van Golde, L. M. G. (1975). Composition and metabolism of phospholipids of Fasciola hepatica, the common liver fluke. Biochimica et Biophysica Acta 398, 101–10.CrossRefGoogle ScholarPubMed

Oldenborg, V., Van Vugt, F., Van Golde, L. M. G. & Van den Bergh, S. G. (1976). Synthesis of fatty acids and phospholipids in Fasciola hepatica. In Biochemistry of Parasites and Host–Parasite Relationships (ed. H., Van den Bossche), pp. 159–66. Amsterdam, New York, Oxford: North–Holland.Google Scholar

Pantelouris, E. M. (1964). Localisation of glycogen in Fasciola hepatica and an effect of insulin. Journal of Helminthology 38, 283–6.CrossRefGoogle Scholar

Pantelouris, E. M. (1965). Effect of host hormones on the internal parasite, Fasciola hepatica. Research in Veterinary Science 6, 330–3.CrossRefGoogle ScholarPubMed

Pearson, I. G. (1963). Use of chromium radioisotope 51Cr to estimate blood loss through ingestion by Fasciola hepatica. Experimental Parasitology 13, 186–93.CrossRefGoogle ScholarPubMed

Pietrzak, S. M. & Saz, H. J. (1981). Succinate decarboxylation to propionate and the associated phosphorylation in Fasciola hepatica and Spirometra mansonoides. Molecular and Biochemical Parasitology 3, 61–70.CrossRefGoogle ScholarPubMed

Prichard, R. K. (1974). Intermediary metabolism in 6-week-old, liver stage, Fasciola hepatica. In Proceedings of the Third International Congress of Parasitology, München 3, 25–31.Google Scholar

Prichard, R. K. (1976). Regulation of pyruvate kinase and phosphoenolpyruvate carboxykinase in adult Fasciola hepatica (Trematoda). International Journal for Parasitology 6, 227–33.CrossRefGoogle ScholarPubMed

Prichard, R. K. (1978). The metabolic profile of adult Fasciola hepatica obtained from rafoxanide treated sheep. Parasitology 76, 277–88.CrossRefGoogle ScholarPubMed

Prichard, R. K. (1980). The role and inhibition of phosphoenolpyruvate carboxykinase in Fasciola hepatica (Trematoda). In Trends in Enzymology (ed. Vitale, L. J. and Simeon, V.), FEBS 61, 315–324, Industrial and Clinical Enzymology. Oxford: Pergamon, 1980.Google Scholar

Prichard, R. K. & Schofield, P. J. (1968 a). A comparative study of the tricarboxylic acid cycle enzymes in Fasciola hepatica and rat liver. Comparative Biochemistry and Physiology 25, 1005–19.CrossRefGoogle ScholarPubMed

Prichard, R. K. & Schofield, P. J. (1968 b). The glycolytic pathway in adult liver fluke, Fasciola hepatica. Comparative Biochemistry and Physiology 24, 697–710.CrossRefGoogle ScholarPubMed

Prichard, R. K. & Schofield, P. J. (1968 c). Phosphoenolpyruvate carboxykinase in the adult liver fluke, Fasciola hepatica. Comparative Biochemistry and Physiology 24, 773–85.CrossRefGoogle ScholarPubMed

Prichard, R. K. & Schofield, P. J. (1969). The glyoxylate cycle, fructose-1,6-diphosphatase and glyconeogenesis in Fasciola hepatica. Comparative Biochemistry and Physiology 29, 581–90.CrossRefGoogle Scholar

Rall, T. W. & Sutherland, E. W. (1958). Formation of a cyclic adenine ribonucleotide by tissue particles. Journal of Biological Chemistry 232, 1065–76.CrossRefGoogle ScholarPubMed

Ramaiah, A. (1974). Pasteur effect and phosphofructokinase. In Current Topics in Cellular Regulation 8, 298–345, (ed. B. L. Horecker and E. R. Stadtman) New York and London: Academic Press.Google Scholar

Renart, M. F., Ayanoglu, G., Mansour, J. M. & Mansour, T. E. (1979). Fluoride and guanosine nucleotide activated adenylate cyclase from Fasciola hepatica: Reconstitution after inactivation. Biochemical and Biophysical Research Communications 89, 1146–53.CrossRefGoogle ScholarPubMed

Rohrbacher, G. H. (1957). Observations on the survival in vitro of bacteria free adult common liver fluke, Fasciola hepatica Linn, 1758. Journal of Parasitology 43, 9–18.CrossRefGoogle Scholar

Saz, H. J. & Lescure, O. L. (1967). Glyconeogenesis, fructose-1,6-diphosphatase and phosphoenolpyruvate carboxykinase activities of Ascaris lumbricoides adult muscle and larvae. Comparative Biochemistry and Physiology 2, 15–28.CrossRefGoogle Scholar

Saz, H. J. & Pietrzak, S. M. (1980). Phosphorylation associated with succinate decarboxylation to propionate in Ascaris mitochondria. Archives of Biochemistry and Biophysics 202, 388–395.CrossRefGoogle ScholarPubMed

Senutaite, Y. (1969). On the pentose phosphate pathway in Fasciola hepatica. Acta Parasitologica Lithuanica 9, 83–7.Google Scholar

Shishov, B. A., Zhuchkova, N. J. & Terenia, N. B. (1974). Study of monoaminergic nerve cells in some nematodes and in trematoda, Fasciola hepatica. In Proceedings of the Third International Congress of Parasitology, München 3, 1503–1504.Google Scholar

Simonic, T. & Locatelli, A. (1978). Effect of 3′,5′ cyclic GMP on Fasciola hepatica phosphorylase. Archivo veterinario Italiano 29, 101–3.Google Scholar

Simonic, T., Sartorelli, P. & Locatelli, A. (1983). Fasciola hepatica: increase of glycogen phosphorylase activity due to prostaglandins. Experimental Parasitology 56, 89–92.CrossRefGoogle ScholarPubMed

Stevenson, W. (1947). Physiological and histochemical observations on the adult liver fluke, Fasciola hepatica L. IV. The excretory system. Parasitology 38, 140–4.CrossRefGoogle Scholar

Stone, D. B. & Mansour, T. E. (1966). Factors influencing activation of liver fluke phosphofructokinase (PFK). Federation Proceedings of the Federation of the American Society for Experimental Biology 25, 219.Google Scholar

Stone, D. B. & Mansour, T. E. (1967 a). Phosphofructokinase from the liver fluke. I. activation by adenosine 3′,5′ phosphate and by serotonin. Molecular Pharmacology 3, 161–76.Google Scholar

Stone, D. B. & Mansour, T. E. (1967 b). Phosphofructokinase from the liver fluke. II. Kinetic properties of the enzyme. Molecular Pharmacology 3, 177–87.Google ScholarPubMed

Sturm, G., Hirschauser, C. & Zilliken, F. (1969). Vergleichende Bestimmung von Enzymaktivaten in Fasciola hepatica und Rinderleber. Hoppe-Seyler's Zeitschrift für Physiologische Chemie 350, 696–700.CrossRefGoogle Scholar

Sturm, G., Hirschauser, C. & Zilliken, F. (1972). Vergleichende Bestimmung von Enzymaktivaten in Dicrocoelium dendriticum, Wirtsleber (Rind) und Fasciola hepatica. Zeitschrift für Parasitenkunde 38, 45–7.CrossRefGoogle ScholarPubMed

Tashima, Y., Mizunuma, H. & Hasegawa, M. (1979). Purification and properties of mouse liver fructose–1,6-bisphosphatase. Journal of Biochemistry 86, 1089–101.CrossRefGoogle ScholarPubMed

Thorpe, E. (1968). Comparative enzyme histochemistry of immature and mature stages of Fasciola hepatica. Experimental Parasitology 22, 150–9.CrossRefGoogle ScholarPubMed

Thorsell, W. (1963). Some acids belonging to the citric acid cycle in the liver fluke Fasciola hepatica. Acta Chemica Scandinavica 17, 2129–31.CrossRefGoogle Scholar

Thorsell, W., Applegren, L-E. & Kippar, M. (1968). Distribution and fate of 2–14C glucose in the liver fluke Fasciola hepatica L after short in vitro incubation. Zeitschrift für Parasitenkunde 31, 113–21.CrossRefGoogle Scholar

Threadgold, L. T. & Hanna, B. (1975). Development of an in vitro technique for cytological investigations of slices of Fasciola hepatica: evaluation of physiological criteria. International Journal for Parasitology 5, 333–7.CrossRefGoogle Scholar

Tielens, A. G. M. (1982). The energy metabolism of the juvenile liver fluke, Fasciola hepatica during its development in the vertebrate host. Ph.D. thesis, University of Utrecht.Google Scholar

Tielens, A. G. M., Van der Meer, P. & Van den Bergh, S. G. (1981 a). Fasciola hepatica: simple large scale in vitro excystment of metacercariae and subsequent isolation of juvenile liver fluke. Experimental Parasitology 51, 8–13.CrossRefGoogle Scholar

Tielens, A. G. M., Van der Meer, P. & Van den Bergh, S. G. (1981 b). The aerobic energy metabolism of juvenile Fasciola hepatica. Molecular and Biochemical Parasitology 3, 205–14.CrossRefGoogle ScholarPubMed

Tielens, A. G. M., Van den Heuvel, J. M. & Van den Bergh, S. G. (1982). Changes in energy metabolism of the juvenile Fasciola hepatica during its development in the liver parenchyma. Molecular and Biochemical Parasitology 6, 277–86.CrossRefGoogle ScholarPubMed

Tielens, A. G. M., Van den Heuvel, J. M. & Van den Bergh, S. G. (1984). The energy metabolism of Fasciola hepatica during its development in the final host. Molecular and Biochemical Parasitology 13, 301–7.CrossRefGoogle ScholarPubMed

Todd, J. R. & Ross, J. G. (1966). Origin of haemoglobin in the caecal contents of Fasciola hepatica. Experimental Parasitology 19, 151–4.CrossRefGoogle ScholarPubMed

Umezurike, G. M. & Anya, A. O. (1980). Carbohydrate energy metabolism in Fasciola gigantica (Trematoda). International Journal for Parasitology 10, 175–80.CrossRefGoogle ScholarPubMed

Utter, M. F. (1961). Phosphoenolpyruvate carboxykinase (PEPCK). In The Enzymes, 2nd vol. 5 (ed. Boyer, P., Lardy, H. and Myrbach, K.), p. 319. New York: Academic Press.Google Scholar

Van den Bergh, S. G., Van Vugt, F. & Tielens, A. G. M. (1980). Anaerobic and aerobic energy metabolism of the common liver fluke, Fasciola hepatica. In Trends in Enzymology (ed. Vitale, L. J. and Simeon, V.), FEBS 61, 231–42, Industrial and clinical Enzymology. Oxford: Pergamon, 1980.Google Scholar

Van Vugt, F. (1979/1980). The energy metabolism of the adult common liver fluke Fasciola hepatica. Veterinary Science Communications 3, 299–316.CrossRefGoogle Scholar

Van Vugt, F., Kalaycioglu, L. & Van den Bergh, S. G. (1976). ATP production in Fasciola hepatica mitochondria. In Biochemistry of Parasites and Host–Parasite Relationships (ed. H., van den Bossche), pp.151–8. Amsterdam, New York, Oxford: North–Holland.Google Scholar

Van Vugt, F., Van der Meer, P. & Van den Bergh, S. G. (1979). The formation of propionate and acetate as terminal processes in the energy metabolism of the adult liver fluke Fasciola hepatica. International Journal of Biochemistry 10, 11–18.CrossRefGoogle ScholarPubMed

Von Brand, T. & Mercado, T. I. (1961). Histochemical glycogen studies on Fasciola hepatica. Journal of Parasitology 47, 459–61.CrossRefGoogle ScholarPubMed

Von Grembergen, G. (1949). Le métabolisme respiratoire du trématode Fasciola hepatica Linn. Enzymologia 13, 241–57.Google Scholar

Ward, P. F. V. (1974). The metabolism of glucose by Haemonchus contortus in vitro. Parasitology 69, 175–90.CrossRefGoogle Scholar

Williams, J. P. G. & Bryant, C. (1963). Intermediary metabolism in the immature liver fluke Fasciola hepatica. Nature, London 200, 489.CrossRefGoogle ScholarPubMed

Wilson, R. A. (1967). A physiological study of the development of the eggs of Fasciola hepatica L. the common liver fluke. Comparative Biochemistry and Physiology 21, 307–20.CrossRefGoogle Scholar

Wright, R. W. & Isseroff, H. (1973). Further studies on the absorption of acetate by Fasciola hepatica. Comparative Biochemistry and Physiology 45 B, 95–9.Google ScholarPubMed

de Zoeten, L. W., Posthuma, D. & Tipker, J. (1969). Intermediary metabolism of the liver fluke, Fasciola hepatica. I. Biosynthesis of propionic acid. Hoppe–Seyler's Zeitschrift für physiologische Chemie 350, 683–9.CrossRefGoogle ScholarPubMed

de Zoeten, L. W. & Tipker, J. (1969). Intermediary metabolism of the liver fluke Fasciola hepatica. II. Hydrogen transport and phosphorylation. Hoppe–Seyler's Zeitschrift für physiologische Chemie 350, 691–5.CrossRefGoogle ScholarPubMed